skip to main content
10.1145/3444884.3444905acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbbeConference Proceedingsconference-collections
research-article

The Molecular Dynamics Study on the PATHOGENICITy of Cystatin C Mutant

Published:31 March 2021Publication History

ABSTRACT

Cystatin C can inhibit cysteine proteases and performs important physiological functions in cells. This protein is involved in the formation of amyloid fibers, and usually found in patients with Alzheimer's diseases or Down syndromes. Experimental evidence indicates that the mutation of human cystatin C 66th position, named L66Q is more likely to form dimers, which self-assemble subsequently to form amyloid deposits. However, the details about how the L66Q forms amyloid deposits are not clear. Here we used MD simulations and revealed that the single-site mutation in the 68th position of chicken cystatin C will cause changes in structural characteristics. The I68Q mutant has a higher fibro genic tendency than the wt, and the I68Q mutant has a tendency to “open” compared to the wt. The Loop1 region of I68Q has greater flexibility, and are easier to form dimers through domain exchange than wt, followed by further forming amyloid fiber deposits. Our study results are consistent with previous experimental conclusions, and provide a new idea for the future research of similar proteins. Besides, our conclusions also afford a solid theoretical basis for conquering amyloid diseases caused by cystatin C from a structural perspective.

References

  1. Abrahamson, M. and Grubb, A., 1994. Increased body temperature accelerates aggregation of the Leu-68–>Gln mutant cystatin C, the amyloid-forming protein in hereditary cystatin C amyloid angiopathy. Proc Natl Acad Sci U S A 91, 4 (Feb 15), 1416-1420. DOI= http://dx.doi.org/10.1073/pnas.91.4.1416.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bode, W., Engh, R., Musil, D., Thiele, U., Huber, R., Karshikov, A., Brzin, J., Kos, J., and Turk, V., 1988. The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J 7, 8 (Aug), 2593-2599.Google ScholarGoogle ScholarCross RefCross Ref
  3. Darden, T., York, D., and Pedersen, L., 1993. Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems. The Journal of chemical physics 98, 12, 10089-10092. DOI= http://dx.doi.org/10.1063/1.464397.Google ScholarGoogle ScholarCross RefCross Ref
  4. Feller, S.E., Zhang, Y., Pastor, R.W., and Brooks, B.R., 1995. Constant pressure molecular dynamics simulation: The Langevin piston method. The Journal of chemical physics 103, 11, 4613-4621. DOI= http://dx.doi.org/10.1063/1.470648.Google ScholarGoogle ScholarCross RefCross Ref
  5. Grubb, A.O., 2000. Cystatin C–properties and use as diagnostic marker. Adv Clin Chem 35, 63-99. DOI= http://dx.doi.org/10.1016/s0065-2423(01)35015-1.Google ScholarGoogle ScholarCross RefCross Ref
  6. Humphrey, W., Dalke, A., and Schulten, K., 1996. VMD: Visual molecular dynamics. Journal of Molecular Graphics 14, 1, 33-38. DOI= http://dx.doi.org/10.1016/0263-7855(96)00018-5.Google ScholarGoogle ScholarCross RefCross Ref
  7. Ibragimova, G.T. and Wade, R.C., 1998. Importance of Explicit Salt Ions for Protein Stability in Molecular Dynamics Simulation. Biophysical Journal 74, 6, 2906-2911. DOI= http://dx.doi.org/10.1016/S0006-3495(98)77997-4.Google ScholarGoogle ScholarCross RefCross Ref
  8. Janowski, R., Kozak, M., Jankowska, E., Grzonka, Z., Grubb, A., Abrahamson, M., and Jaskolski, M., 2001. Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat Struct Biol 8, 4 (Apr), 316-320. DOI= http://dx.doi.org/10.1038/86188.Google ScholarGoogle ScholarCross RefCross Ref
  9. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L., 1983. Comparison of simple potential functions for simulating liquid water. The Journal of chemical physics 79, 2, 926-935. DOI= http://dx.doi.org/10.1063/1.445869.Google ScholarGoogle ScholarCross RefCross Ref
  10. Mackerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-Mccarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., and Karplus, M., 1998. All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B 102, 18 (Apr 30), 3586-3616. DOI= http://dx.doi.org/DOI 10.1021/jp973084f.Google ScholarGoogle ScholarCross RefCross Ref
  11. Mahoney, M. and Jorgensen, W., 2000. A five- site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. Journal Of Chemical Physics 112, 20, 8910-8922.Google ScholarGoogle ScholarCross RefCross Ref
  12. Martin, K. and Mccammon, J.A., 2002. Molecular dynamics simulations of biomolecules. Nature Structural Biology 9, 9, 646. DOI= http://dx.doi.org/10.1038/nsb0902-646.Google ScholarGoogle Scholar
  13. Martyna, G.J., Tobias, D.J., and Klein, M.L., 1994. Constant pressure molecular dynamics algorithms. The Journal of chemical physics 101, 5, 4177-4189. DOI= http://dx.doi.org/10.1063/1.467468.Google ScholarGoogle ScholarCross RefCross Ref
  14. Miyamoto, S. and Kollman, P.A., 1992. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry 13, 8, 952-962. DOI= http://dx.doi.org/10.1002/jcc.540130805.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., and Schulten, K., 2005. Scalable molecular dynamics with NAMD. J Comput Chem 26, 16 (Dec), 1781-1802. DOI= http://dx.doi.org/10.1002/jcc.20289.Google ScholarGoogle ScholarCross RefCross Ref
  16. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., De beer, T.A p., Rempfer, C., Bordoli, L., Lepore, R., and Schwede, T., 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research 46, W1, W296-W303. DOI= http://dx.doi.org/10.1093/nar/gky427.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    ICBBE '20: Proceedings of the 2020 7th International Conference on Biomedical and Bioinformatics Engineering
    November 2020
    197 pages
    ISBN:9781450388221
    DOI:10.1145/3444884

    Copyright © 2020 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 31 March 2021

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited
  • Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)0

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format