skip to main content
10.1145/3447548.3467109acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Addressing Non-Representative Surveys using Multiple Instance Learning

Published:14 August 2021Publication History

ABSTRACT

In recent years, non representative survey sampling and non response bias constitute major obstacles in obtaining a reliable population quantity estimate from finite survey samples. As such, researchers have been focusing on identifying methods to resolve these biases. In this paper, we look at this well known problem from a fresh perspective, and formulate it as a learning problem. To meet this challenge, we suggest solving the learning problem using a multiple instance learning (MIL) paradigm. We devise two different MIL based neural network topologies, each based on a different implementation of an attention pooling layer. These models are trained to accurately infer the population quantity of interest even when facing a biased sample. To the best of our knowledge, this is the first time MIL has ever been suggested as a solution to this problem. In contrast to commonly used statistical methods, this approach can be accomplished without having to collect sensitive personal data of the respondents and without having to access population level statistics of the same sensitive data. To validate the effectiveness of our approaches, we test them on a real-world movie rating dataset which is used to mimic a biased survey by experimentally contaminating it with different kinds of survey bias. We show that our suggested topologies outperform other MIL architectures, and are able to partly counter the adverse effect of biased sampling on the estimation quality. We also demonstrate how these methods can be easily adapted to perform well even when part of the survey is based on a small number of respondents.

Skip Supplemental Material Section

Supplemental Material

addressing_nonrepresentative_surveys_using_multiple-yaniv_katz-oded_vainas-38958078-vw9T.mp4

mp4

134.3 MB

References

  1. Ji-Yeon Kim. 2004. Nonparametric regression estimation under complex sampling designs. PhD thesis. doi: 10.31274/rtd-180813--13205.Google ScholarGoogle Scholar
  2. Scott Keeter, Carolyn Miller, Andrew Kohut, Robert M. Groves, and Stanley Presser. 2000. Consequences of reducing nonresponse in a national telephone survey. Public Opinion Quarterly, 64, 2, (August 2000), 125--148. doi: 10.1086/317759.Google ScholarGoogle Scholar
  3. Shannon Greenwood, Andrew Perrin, and Maeve Duggan. 2016. Social media update. Pew Research Center.Google ScholarGoogle Scholar
  4. Mick P. Couper, Christopher Antoun, and Aigul Mavletova. 2017. Mobile web surveys. In Total Survey Error in Practice. John Wiley & Sons, Inc., (February2017), 133--154. doi: 10.1002/9781119041702.ch7.Google ScholarGoogle ScholarCross RefCross Ref
  5. Michael P. Battaglia, David C. Hoaglin, and Martin R. Frankel. 2009. Practical considerations in raking survey data. Survey Practice, 2, 5, (June 2009), 1--10. doi: 10.29115/sp-2009-0019.Google ScholarGoogle Scholar
  6. Roderick J. A. Little. 1993. Post-stratification: a modeler's perspective. Journal of the American Statistical Association, 88, 423, (September 1993), 1001--1012.doi: 10.1080/01621459.1993.10476368.Google ScholarGoogle ScholarCross RefCross Ref
  7. Bobby Duffy, Kate Smith, George Terhanian, and John Bremer. 2005. Comparing data from online and face-to-face surveys. International Journal of Market Research, 47, 6, (November 2005), 615--639.doi: 10.1177/147078530504700602.Google ScholarGoogle ScholarCross RefCross Ref
  8. Douglas. Rivers. 2007. Sampling for web surveys. Joint Statistical Meetings.Google ScholarGoogle Scholar
  9. Cavan Reilly, Andrew Gelman, and Jonathan Katz. 2001. Post stratification without population level information on the post stratifying variable with application to political polling. Journal of the American Statistical Association, 96, 453, (March 2001), 1--11. doi: 10.1198/016214501750332640.Google ScholarGoogle ScholarCross RefCross Ref
  10. Pike R. Gary. 2007. Adjusting for nonresponse in surveys. In Higher Education: Handbook of Theory and Research. Springer Netherlands, 411--449.doi: 10.1007/978--1--4020--5666--6_8.Google ScholarGoogle Scholar
  11. Felix Bader, Johannes Bauer, Martina Kroher, and Partick Riordan. 2016. Privacy concerns in responses to sensitive questions. a survey experiment on the influence of numeric codes on unit nonresponse, item nonresponse, and misreporting. en.methods, data, (July 2016), No 1 (2016). doi: 10.12758/MDA.2016.003.Google ScholarGoogle Scholar
  12. Vili Lehdonvirta, Atte Oksanen, Pekka Rasanen, and Grant Blank. 2020. Social media, web, and panel surveys: using non- probability samples in social and policy research, (April 2020). doi: 10.31219/osf.io/qrwg4.Google ScholarGoogle Scholar
  13. Andrew Gelman and Thomas C. Little. 1997. Post stratification into many categories using hierarchical logistic regression.Google ScholarGoogle Scholar
  14. Max Goplerud, Shiro Kuriwaki, Marc Ratkovic, and Dustin Tingley. 2018. Sparse multilevel regression (and post stratification (smrp)).Google ScholarGoogle Scholar
  15. Trent D. Buskirk, Antje Kirchner, Adam Eck, and Curtis S. Signorino. 2018. An introduction to machine learning methods for survey researchers. Survey Practice, 11, 1, (January 2018), 1--10. doi: 10.29115/sp-2018-0004.Google ScholarGoogle Scholar
  16. Christoph Kern, Thomas Klausch, and Frauke Kreuter. 2019. Tree-based ma-chine learning methods for survey research. en.Survey Research Methods, Vol 13, (April 2019), No 1 (2019). doi: 10.18148/SRM/2019.V1I1.7395.Google ScholarGoogle Scholar
  17. Thomas G. Dietterich, Richard H. Lathrop, and Tomás Lozano-Pérez. 1997.Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence, 89, 1--2, 31--71. doi: 10.1016/s0004--3702(96)00034--3.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Francisco Herrera, Sebastián Ventura, Rafael Bello, Chris Cornelis, Amelia Zafra, Dánel Sánchez-Tarrago, and Sarah Vluymans. 2016. Multi-instance regression. In Multiple Instance Learning. Springer International Publishing, 127--140. doi: 10.1007/978--3--319--47759--6_6.Google ScholarGoogle Scholar
  19. Jaume Amores. 2013. Multiple instance classification: review, taxonomy and comparative study. 201, (August 2013), 81--105.issn: 0004--3702. doi: 10.1016/j.artint.2013.06.003.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Gang Chen and Jason Corso. 2012. Greedy multiple instance learning via codebook learning and nearest neighbor voting. arXiv preprint arXiv, (May 2012). arXiv: 1205.0610.Google ScholarGoogle Scholar
  21. Minlong Peng and Qi Zhang. 2019. Address instance-level label prediction in multiple instance learning. arXiv preprint arXiv, (May 2019). arXiv: 1905.12226.Google ScholarGoogle Scholar
  22. Guoqing Liu, Jianxin Wu, and Zhi-Hua Zhou. 2012. Key instance detection in multi-instance learning. 4th Asian Conference on Machine Learning, 253--68.Google ScholarGoogle Scholar
  23. Marc-André Carbonneau, Veronika Cheplygina, Eric Granger, and Ghyslain Gagnon. 2018. Multiple instance learning: a survey of problem characteristics and applications. Pattern Recognition, 77, (May 2018), 329--353. doi: 10.1016/j.patcog.2017.10.009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Weixin Li and Nuno Vasconcelos. 2015. Multiple instance learning for soft bags via top instances. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, (June 2015). doi: 10.1109/cvpr.2015.7299056.Google ScholarGoogle ScholarCross RefCross Ref
  25. Nikolaos Pappas and Andrei Popescu-Belis. 2017. Explicit document modeling through weighted multiple-instance learning. Journal of Artificial Intelligence Research, 58, (March 2017), 591--626. doi: 10.1613/jair.5240.Google ScholarGoogle ScholarCross RefCross Ref
  26. P.J. Sudharshan, Caroline Petitjean, Fabio Spanhol, Luiz Eduardo Oliveira, Laurent Heutte, and Paul Honeine. 2019. Multiple instance learning for histopathological breast cancer image classification. Expert Systems with Applications, 117, (March 2019), 103--111. doi: 10.1016/j.eswa.2018.09.049.Google ScholarGoogle Scholar
  27. Stefan Duffner and Christophe Garcia. 2020. Multiple instance learning for training neural networks under label noise. In 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, (July 2020). doi: 10.1109/ijcnn48605.2020.9206669.Google ScholarGoogle ScholarCross RefCross Ref
  28. Yanshan Xiao, Fei Liang, and Bo Liu. 2020. A transfer learning-based multi-instance learning method with weak labels. IEEE Transactions on Cybernetics, (March 2020), 1--14.doi: 10.1109/tcyb.2020.2973450.Google ScholarGoogle ScholarCross RefCross Ref
  29. V. N. Vapnik. 1998. Statistical learning theory. Wiley.Google ScholarGoogle ScholarCross RefCross Ref
  30. Bianca Zadrozny. 2004. Learning and evaluating classifiers under sample selection bias. In Twenty-first international conference on Machine learning - ICML'04. ACM Press, (July 2004). doi: 10.1145/1015330.1015425.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Hidetoshi Shimodaira. 2000. Improving predictive inference under covariate shift by weighting the log-likelihood function.Journal of Statistical Planning and Inference, 90, 2, (October 2000), 227--244. doi: 10.1016/s0378--3758(00)00115--4.Google ScholarGoogle Scholar
  32. Jose Blanchet and Henry Lam. 2012. State-dependent importance sampling for rare-event simulation: an overview and recent advances.Surveys in Operations Research and Management Science, 17, 1, (January 2012), 38--59.doi: 10.1016/j.sorms.2011.09.002.Google ScholarGoogle Scholar
  33. Soumya Ray and David Page. 2001. Multiple instance regression. Proc. Int. Conf. Mach. Learn., 425--432.Google ScholarGoogle Scholar
  34. Daniel Dooly, Qi Zhang, Sally Goldman, and Robert Amar. 2001. Multiple instance learning of real valued data. In ICML. (June 2001).Google ScholarGoogle Scholar
  35. Zhuang Wang, Vladan Radosavljevic, Bo Han, Zoran Obradovic, and Slobodan Vucetic. 2008. Aerosol optical depth prediction from satellite observations by multiple instance regression. In Proceedings of the 2008 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics,(April 2008). doi: 10.1137/1.9781611972788.15.Google ScholarGoogle ScholarCross RefCross Ref
  36. Yun Wang, Juncheng Li, and Florian Metze. 2019. A comparison of five multiple instance learning pooling functions for sound event detection with weak labeling. InICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, (May 2019). doi: 10.1109/icassp.2019.8682847.Google ScholarGoogle Scholar
  37. Tomas Pevny and Petr Somol. 2016. Using neural network formalism to solve multiple-instance problems, (September 23, 2016). arXiv: 1609.07257[cs.LG].Google ScholarGoogle Scholar
  38. Yong Xu, Qiuqiang Kong, Wenwu Wang, and Mark D. Plumbley. 2017. Large-scale weakly supervised audio classification using gated convolutional neural network, (October 1, 2017). arXiv: 1710.00343[cs.SD].Google ScholarGoogle Scholar
  39. Changsong Yu, Karim Said Barsim, Qiuqiang Kong, and Bin Yang. 2018. Multi-level attention model for weakly supervised audio classification, (March 6, 2018). arXiv: 1803.02353[eess.AS].Google ScholarGoogle Scholar
  40. Xinggang Wang, Yongluan Yan, Peng Tang, Xiang Bai, and Wenyu Liu. 2018. Revisiting multiple instance neural networks. Pattern Recognition, 74, (February 2018), 15--24.doi: 10.1016/j.patcog.2017.08.026.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Vijay Manikandan Janakiraman. 2018. Explaining aviation safety incident susing deep temporal multiple instance learning. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM,(July 2018). doi: 10.1145/3219819.3219871.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Yue Ning, Sathappan Muthiah, Huzefa Rangwala, and Naren Ramakrishnan. 2016. Modeling precursors for event forecasting via nested multi-instance learning. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, (August 2016). doi: 10.1145/2939672.2939802.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Maximilian Ilse, Jakub M. Tomczak, and Max Welling. 2018. Attention-based deep multiple instance learning. Proceedings of the 35 th International Conference on Machine Learning, (February 13, 2018). arXiv: 1802.04712[cs.LG].Google ScholarGoogle Scholar
  44. F. Maxwell Harper and Joseph A. Konstan. 2015. The Movie Lens datasets. ACM Transactions on Interactive Intelligent Systems, 5, 4, (December 2015), 1--19. doi:10.1145/2827872.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Veronika Cheplygina, David M.J. Tax, and Marco Loog. 2015. Multiple instance learning with bag dissimilarities. Pattern Recognition, 48, 1, (January 2015),264--275.doi: 10.1016/j.patcog.2014.07.022.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. 2013. Regularization of neural networks using drop connect. In Proceedings of the 30th International Conference on Machine Learning(Proceedings of Machine Learning Research) number 3. Sanjoy Dasgupta and David McAllester, editors. Volume 28. PMLR, Atlanta, Georgia, USA, (June 2013), 1058--1066. http://proceedings.mlr.press/v28/wan13.html.Google ScholarGoogle Scholar
  47. Zhuang Wang, Liang Lan, and Slobodan Vucetic. 2012. Mixture model for multiple instance regression and applications in remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 50, 6, (June 2012), 2226--2237. doi:10.1109/tgrs.2011.2171691.Google ScholarGoogle ScholarCross RefCross Ref
  48. Kiri L. Wagstaff, Terran Lane, and Alex Roper. 2008. Multiple-instance regression with structured data. In 2008 IEEE International Conference on Data Mining Workshops. IEEE, (December 2008). doi: 10.1109/icdmw.2008.31.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Douglas A Reynolds. 2009. Gaussian mixture models. Encyclopedia of biometrics 741.Google ScholarGoogle Scholar
  50. Guolin Ke, Qi Meng, Thomas Finely, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: a highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems 30.Google ScholarGoogle Scholar
  51. Matthew D. Zeiler and Rob Fergus. 2014. Visualizing and understanding convolutional networks. In European conference on computer vision. Springer. (September 2014).Google ScholarGoogle Scholar

Index Terms

  1. Addressing Non-Representative Surveys using Multiple Instance Learning

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Article Metrics

          • Downloads (Last 12 months)18
          • Downloads (Last 6 weeks)1

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader