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By definition, outliers are rarely observed in reality, making them difficult to detect or analyse. Artificial

outliers approximate such genuine outliers and can, for instance, help with the detection of genuine outliers

or with benchmarking outlier-detection algorithms. The literature features different approaches to generate

artificial outliers. However, systematic comparison of these approaches remains absent. This surveys and

compares these approaches. We start by clarifying the terminology in the field, which varies from publication

to publication, and we propose a general problem formulation. Our description of the connection of generating

outliers to other research fields like experimental design or generative models frames the field of artificial

outliers. Along with offering a concise description, we group the approaches by their general concepts and

how they make use of genuine instances. An extensive experimental study reveals the differences between the

generation approaches when ultimately being used for outlier detection. This survey shows that the existing

approaches already cover a wide range of concepts underlying the generation, but also that the field still has

potential for further development. Our experimental study does confirm the expectation that the quality of

the generation approaches varies widely, for example, in terms of the data set they are used on. Ultimately, to

guide the choice of the generation approach in a specific context, we propose an appropriate general-decision

process. In summary, this survey comprises, describes, and connects all relevant work regarding the generation

of artificial outliers and may serve as a basis to guide further research in the field.

CCS Concepts: • Computing methodologies→ Anomaly detection; Supervised learning by classification.

Additional Key Words and Phrases: Artificial Outlier, Outlier Detection, Anomalies, Artificial Data

1 INTRODUCTION
Outliers are data instances that deviate from normal ones [9, 21, 28, 49, 52]. Since they are abnormal,

one is unlikely to observe them. In addition, given some notion of “normal”, outliers can deviate from

that normal instances in infinite ways. Given their rarity and variety, developing methods to detect

outliers is difficult. Nevertheless, numerous approaches to this identification exist [9, 28]. If there are

known outliers available for study, one can use classical supervised approaches for outlier detection

(i.e., solve a very imbalanced classification problem) [9]. When such outliers are unavailable, many

approaches have been developed to identify outliers in that circumstance as well. However, a

learning task without a single instance from one of the classes of interest is difficult: because it is

nearly impossible to evaluate the performance of different approaches for example. Thus, there

exists a large body of literature on generating artificial outliers [1, 3, 12, 17, 21, 23, 26, 27, 40, 42, 47–

49, 51–54]. The idea is that one extends the given data set through accurate approximations of

outliers and thus resolves the problem of an unknown class. Approaches to generate artificial

outliers can rely on genuine outliers (i.e., outliers that have been observed and are not artificial). One

famous approach of this kind is the Synthetic Minority Over-sampling Technique (SMOTE) [11].

However, the problem SMOTE tries to solve, differs from that of generating outliers without any

genuine outliers available. In this study, we focus on approaches for outlier generation without

genuine outliers.
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1.1 Purpose of This Survey
The common ground for different uses of artificial outliers or approaches to generate such outliers

remains unclear, mainly due to a limited general perspective. That is, what artificial outliers are

used for in general and how existing approaches to generate them differ are currently not well

formulated. The absence of a sophisticated general perspective makes it also difficult to connect the

generation of artificial outliers to other research fields, such as generative modelling or adversarial

learning. This integration, however, would be beneficial for both the generation of artificial outliers

and for related fields. One obstacle to such a general perspective, however, is that the terminology

used in articles from different fields varies widely.

Possibly due to the missing general perspective, there is not much knowledge available on the

performance of generating outliers or methods using them. For example, we are aware of only

one comparison of the two most common uses for artificial outliers: (1) casting an unsupervised

learning task into a supervised one and (2) parameter tuning of one-class classifiers (see Section 3

for details). Both these uses for artificial outliers result in a method to detect real outliers. In [15]

the two uses are compared, but only for a few rather similar generation approaches. Hence, we

find it somewhat difficult to assess whether one of the two uses yields better outlier detection,

irrespective of the generation approach used. A sizable study is also needed to investigate the

hypothesis that a high-quality result using a specific generation approach is not general. In other

words, other generation approaches might be better on, say, other data sets.

1.2 Goals of This Survey
With this survey we want to give the field of artificial outliers the missing general perspective.

This is, clarifying the differences of the many diverse approaches to generate artificial outliers that

already exist but also formulating and discussing a more general problem formulation.

Having some general perspective we also aim at a sizeable study that features systematic com-

parisons in terms of uses and generation approaches for artificial outliers. In particular, we want to

compare (1) the performance of the different generation approaches, (2) the difference in outlier-

detection performance of the two common uses for artificial outliers, and (3) analyse the character-

istics of the data (e.g., the number of attributes) that influence the performance of approaches for

generating artificial outliers or using them. Another goal we have is to construct a concise set of

advises to guide anyone in the application of artificial outliers. These should simplify the usage

of artificial outliers by much and thus might further increase their usage in the detection of real

outliers.

1.3 Methods
We start this survey by establishing a unified terminology around artificial outliers. We then

describe the different usages of artificial outliers. Following this, we highlight connections to other

research fields and possible synergies. Given these connections, we produce a general problem

formulation for the generation of artificial outliers and embed existing approaches into it. We

describe each existing approach, using the unified terminology. All this together results in the

general perspective on the field of artificial outliers we aim at.

We then perform extensive experiments, comparing the two most common uses for artificial

outliers. These also allow us to analyse the performance of the different generation approaches

with many benchmark-data sets on outlier detection. The effect of data characteristics like the

number of attributes can be analysed as well. Following the careful analysis of the results of our

experiments we synthesize the findings obtained into a straightforward decision process that guides

in the usage of artificial outliers.



Generating Artificial Outliers in the Absence of Genuine Ones — a Survey 3

1.4 Organization of This Survey
The remainder of this article is structured as follows. We introduce a general terminology in

Section 2, and describe the usages of artificial outliers in Section 3. We then establish connections

between the topic of generating artificial outliers with other research fields in Section 4. In Section 5,

we offer a general problem formulation. Section 6 describes the different generation approaches

that presently exist. Section 7 outlines methods to filter artificial outliers for ones that give better

results than the set of unfiltered ones. Section 8 contains the results of our extensive experimental

study, and Section 9 presents our conclusions.

2 TERMINOLOGY AND NOTION
In this section, we specify the terminology used in this survey. We start by discussing terms that

are ambiguous in the literature and proceed with further terminology and notions.

2.1 Ambiguities in the Literature
Certain issues arise in the process of describing a data set. “Instances” are also referred to as

“examples” [1, 3, 12], “objects” [51–53], “observations” [47, 49], “vectors” [23], “input/sample” [34],

“data” [54], or “data points” [14]. Here we prefer the term “instances” throughout. Another issue is

the naming of the different characteristics of instances. Common terms are “attributes” [3, 12, 17,

27, 48, 52, 53], “features” [21, 23, 40, 42, 49] or “dimensions” [51, 54]. We use “attribute”. Another

ambiguity is the term for the set of all possible instances. For example, when the data set consists

of d real valued attributes, the set of all possible instances is some subset of IR
d
. Possible terms are

“feature space” [40, 51, 53], “space” [23], “domain” [21], “input space” [14] or “region” [48]. We use

“instance space”.

There also are ambiguities in the general field of outlier detection. Most central is the notion of

outliers itself. Aside from “outlier” [1, 12, 17, 27, 40, 48, 51, 53, 54], some authors use “anomaly” [21,

23, 49, 52], “out-of-distribution sample” [34], “negative example” [3, 23], “counter example” [3],

“attack example” [42] or “infeasible example” [40]. We use “outlier”. The term for the counterpart

of outliers is ambiguous as well. While they often are referred to as “normal” instances [1, 21,

23, 27, 42, 49, 52, 54], other terms used include “inlier” [48], “positive” instance [3] or “feasible”

instance [40]. We use “normal” instances.

We see two notions with ambiguous terminology related to artificial outliers. These outliers often

are referred to as “artificial” outliers [1, 12, 17, 21, 27, 40, 42, 49, 51–53], and the procedure that

creates them is referred to as “generation” [1, 3, 12, 17, 21, 23, 27, 40, 42, 47, 49, 51, 53, 54]. However,

Wang et al. [54] use “pseudo”, and Shi and Horvath [47] use “synthetic” instead of “artificial”.

Instead of “generated”, [48] uses “placed”, and [14, 34] use “sample”. We will use “artificial” and

“generated”.

2.2 Further Terminology and Notation
In this survey we refer to four types of instances. Instances are either genuine or artificial, each of

which can be termed either normal or outlier (see Figure 1). In line with the majority of generating

approaches, when we refer to genuine instances, we mean both normal and outlier instances that

are not generated. In this survey, we focus on artificial outliers. Thus, artificial instances are outliers

unless explicitly stated otherwise.

Table 1 summarizes our mathematical notation that we will detail in the following. Let the given

data set Data ∈ IR
n×d

be a matrix in which each row represents a data instance and each column

an attribute. Hence, we have n instances with d attributes. Let inst denote an instance of any type

from Figure 1 and art, an artificial one. The value of the ith attribute of an instance inst is inst(i),
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Instance

Genuine

Normal Outlier

Artificial

Normal Outlier

Fig. 1. Terminology regarding instances

where i as a subscript refers to the ith value from a set. For example, insti is the ith instance from

Data. This notation generalizes to other objects (like the distributions from Definition 2.1) and

also sets other than the data set. Variable l refers to the label of an instance (normal or outlier)
in Section 4.1. A set of artificial outliers is referred to as ArtOuts, and one of genuine outliers, as

Outs. An interesting set of artificial outliers (cf. Definition 5.1) is abbreviated with IntrArtOuts. A
data set that is extended with nart artificial outliers is referred to as DataExt ∈ IR

n+nart×d
, and C

is the shorthand for a classifier, while p(·) denotes a probability density or mass function. It is a

density function if the random variable to which it refers is continuous, and a mass function if this

random variable is discrete. The k-nearest neighbors of an instance are denoted as Neighs, while a
single nearest neighbor is denoted as neigh. Certain highly specific notions (e.g., the parameters of

a generation approach) are not featured here. These are introduced where needed.

Table 1. Overview of our notions.

Notion Meaning

Data Given data set

DataExt Data set with artificial outliers

d Number of data attributes

n Number of genuine instances

nart Number of artificial outliers

Outs Set of genuine outliers

ArtOuts Set of artificial outliers

inst Any instance

l Label of inst
inst(i) Value of inst’s ith attribute

insti ith instance from a set

art Artificial instance

IntrArtOuts Set of interesting artificial outliers

Neighs Set of k-nearest neighbors
neigh Any neighbor

Classifiers Set of classifers

C Any classifer

p(·) Probability density/mass function

Norm(·) Distribution of normal instances

Out(·) Distribution of outliers



Generating Artificial Outliers in the Absence of Genuine Ones — a Survey 5

To conclude this section, Definition 2.1 gives the notation for different distributions.

Definition 2.1 (Out(·) , Norm(·)). Out(·) and Norm(·) are the distributions of any instance inst,
Out(·) for outlier instances and Norm(·) for normal ones.

A subscript indicates if the distribution is for a special type of instance. For example, NormGenu(·)
denotes the distribution of normal genuine instances.

3 USAGE OF ARTIFICIAL OUTLIERS
Having the unified terminology from Section 2, we now describe problems that one can solve with

artificial outliers, subsequently referred to as “use cases”. The joint description of these use case is

the first building block for our general perspective on artificial outliers.

We are aware of three use cases from the literature: (1) casting an unsupervised learning task into

a supervised one [1, 3, 17, 19, 21, 23, 26, 27, 40, 42, 47, 49, 52], subsequently referred to as “casting

task”; (2) parameter tuning of one-class classifiers [14, 51, 53, 54], referred to as “one-class tuning”;

and (3) exploring properties of a specific type of outlier with artificial outliers [48], referred to as

“exploratory usage”. We order the detailed description of each use case in the following by their

relevance in the literature.

3.1 Casting Task
This use case is based on the observation that a data set extended with artificial outliers consists of

two fully labelled classes: genuine and artificial instances. The genuine instances are those that

have actually been observed, while artificial instances have been generated. Thus, one can apply

any classifier to set the two apart. Genuine instances mostly are normal, and the artificial ones

have been generated so that they are outliers. The classifier thus learns to distinguish between

normal and outlying instances. Next, the number of artificial outliers is controllable. Thus, unlike

“classical” supervised outlier detection, this classification does not even have to be unbalanced.

One reason this approach is common might be that it has a theoretical basis [1, 19, 26, 27, 49, 52].

Given some data with unknown distribution, one can use a classifier that distinguishes genuine

from artificial instances, to obtain a density estimation of the genuine instances. This in turn allows

identifying instances that are unlikely. Section 14.2.4 (âĂĲUnsupervised as Supervised LearningâĂİ)

in [26] and [49] show this for different types of classifiers.

3.2 One-Class Tuning
Another use case is hyper-parameter tuning for one-class classifiers [51, 53, 54]. The training of a

one-class classifier uses only instances from one class to learn to separate new instances belonging

to this class from those that do not [27]. Instances not belonging to the class are deemed “outliers”.

A common one-class classifier belongs to the category of Support Vector Machines (SVMs): the

Support Vector Data Description (SVDD) introduced in [50]. It has hyperparameters s and ν [51]

where s is the kernel width, and ν is an upper bound on the fraction of genuine instances classified

as outlying. To choose values for both parameters, one must optimize the error rate of the resulting

one-class classifier [51]. However, since one-class classification is applied when there is either no

outliers or not a sufficient number of outliers, estimating this error is difficult. Various approaches

for the generation of artificial outliers have been developed to estimate the error [51, 53, 54].

While the two use cases described so far differ, their outcome is the same: a classifier for outlier

detection. In both use cases, the artificial outliers help train the classifier. A good generation

approach yields a high detection rate on outliers, be they genuine or artificial. To investigate

the quality differences in terms of outlier detection between the two cases, we have performed
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experiments, see Section 8.7. We have found that there are some differences, but none of the two

use cases is clearly preferable in terms of detection quality.

3.3 Exploratory Usage
So-called “hidden outliers” are the object of study in [48]. A hidden outlier is one that is detectable

only in certain subsets of the attributes [39, 48]. Hidden outliers are not visible for detection schemes

not explicitly looking at these subsets of attributes. Hence, they depict blind spots of the detection

scheme that could be very dangerous for the system monitored. [48] has derived properties of

hidden outliers. An example is how dependencies among attributes or the number of genuine

instances influence the occurrence of hidden outliers. [48] uses artificial hidden outliers to study

such characteristics. To this end, artificial outliers are generated and then filtered for hidden ones.

One can then check how many artificial outliers are actually hidden. This methodology allows one

to infer the characteristics of the data set and of the attribute subsets which influence the occurrence

of hidden outliers. With these characteristics, one can develop methods to search for attribute

subsets robust to hidden outliers. An attribute subset is robust to hidden outliers if generating or

finding hidden outliers in it is difficult. Put generally, one can use artificial outliers to explore and

analyse special kinds of outliers.

4 CONNECTION TO OTHER FIELDS
The goals of the use cases for artificial outliers given in Section 3 allow us now to connect the

generation of artificial outliers to other research fields. This is another building block for our

general perspective on artificial outliers.

We see at least three broad research fields closely connected to artificial outliers: generative

models, design of experiments and adversarial machine learning. The first two are fields from

statistics, while the last one is a relatively new paradigm mostly from computer science. In the

following we will discuss the general ideas of each of these research fields but also their connection

to the generation of artificial outliers.

4.1 Generative Models
The following discussion is mostly based on the work of Bernardo et al. [4] on the connection

between discriminative and generative models. In machine learning, one often tries to predict a

label li that belongs to an instance insti . In the remainder of this section, li identifies insti as normal
or outlier (classification). The goal then is to determine the conditional probability p(l | inst) from a

given data set Data (i.e., the distribution of l given an instance insti ). Two common approaches to

do so are discriminative or generative, respectively. Discriminative models directly approximate

p(l | inst), while generative ones first try to find the joint distribution p(l , inst). By sampling

from this joint distribution, it is possible to generate instances. Hence, these models are called

“generative”. Specifying the joint distribution p(l , inst) is usually done by defining a distribution for

the classes p(l) and a class-conditional distribution for the instances p(inst | l), along with finding

the best fit to the instances in Data. This specification gives the joint distribution by

p(l , inst) = p(inst | l) · p(l). (1)

We have omitted the distribution parameters that are fitted using Data for the sake of clarity.
Since l can only take two distinct values, the generative model is fully specified if p(inst | l =

normal), p(l = normal) =: pnormal, p(inst | l = outlier) and p(l = outlier) =: poutlier are specified.
Artificial outliers are essentially samples from p(inst | l = outlier) or at least approximations of

these samples. To generate the artificial outliers, one explicitly or implicitly defines p(inst | l =
outlier). With the number of samples generated, pnormal and poutlier are defined as well. Thus, when
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generating artificial outliers, most parts of the generative model are also defined. The only missing

part is the distribution of normal instances p(inst | l = normal). Hence, if we explicitly define

p(inst | l = outlier) and estimate p(inst | l = normal) from the data, we end up with a generative

model for outlier detection. This, however, is not the only connection between artificial outliers and

generative models. A generative model can also be used to classify instances as outlier or normal.

This classification is also what artificial outliers facilitate in the use cases casting task and one-class
tuning. Interestingly, outliers do not need to be generated for the generative model, since their

distribution only needs to be defined. The issue with such an approach, however, is that estimating

p(inst | l = normal) is not simple. The generation of outliers is often simpler. Thus, using some

artificial outliers to train or tune a classifier is simpler or sometimes simply more effective than

is specifying the generative model. The connection of artificial outliers and generative models is

strong. If it is simple to, for instance, estimate p(inst | l = normal) in some setting, one might prefer

the generative model over artificial outliers.

Another insight in this context comes from poutlier. We find it surprising that many inventors of

generation approaches do not discuss its importance. Since poutlier is part of the generative model,

it clearly does affect the decision of whether an instance is an outlier or not. Recall that in the

case of artificial outliers, poutlier is essentially given by nart. Hence, nart also determines whether an

instance is an outlier or not.

4.2 Design of Experiments
The following description is based on [36].

The “Design of Experiments” deals with modeling the dependence of a random variable l
on some deterministic factors inst(1), . . . , inst(d ) (i.e., attribute values). A combination of the d
deterministic factors yields an artificial instance inst. As in the previous section, l identifies inst as
normal or outlier. The topic “Design of Experiments” aims to find a set of such factor combinations

Design = {inst1, . . . , instnart } that give optimal results regarding l . To illustrate, “optimal” can

mean that our classification with regard to l yields a perfect accuracy. One does not need to

estimate this classification from Design alone. It is also reasonable to consider that it is learned from

DataExt = Design ∪ Data, like in the casting task use case. Hence, the generation of artificial outliers

can be seen as a subfield of the design of experiments. Although it is difficult to make the definition

of “optimal” more concrete, we approach this in Section 5. The design of experiments encompasses

extensive theoretical work. We believe that establishing a rigid connection of artificial outliers to

this broad field may facilitate a rather formal derivation of relevant concepts and approaches.

To our knowledge, no previous work has been done regarding artificial outliers in the field of

design of experiments. However, some rather general approaches to a good Design seem to be

applicable. One such approach is already common when generating artificial outliers (unifBox,

see Section 6.1.1) [36]. It relies entirely on random sampling. This reliance makes it difficult to

ensure that the whole instance space (e.g., IR
n×d

) is evenly covered. However, such behavior often

is a desirable property, since it is usually not known a priori which regions of the instance space

have to be covered. The Latin hypercube design ensures that the instances are evenly spread in the

instance space [45]. See Definition 4.1.

Definition 4.1 (lhs). lhs is an approach to generate artificial instances using the so-called Latin
hypercube design, as follows: To generate nart instances, partition the value range of each attribute

into nart equally sized intervals. This yields a grid with (nart)d cells. Assign the integers 1, . . . ,nart
to cells so that each integer appears only once in any dimension of the grid. Now, randomly select

an integer i ∈ 1, . . . ,nart. Finally, generate nart instances by sampling uniformly within the nart
cells which integer i has been assigned to.
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The only generation parameter of lhs is nart. Figure 2 features an illustration of the lhs approach.

1 2 3

1

1

2

2

3

3

Artificial Inst Grid

Fig. 2. Illustration of the generation approach lhs. nart = 3 and i = 2.

In our experiments, we let the artificial instances generated with lhs compete against the

output of approaches specifically designed for the generation of outliers. In the two use cases

casting task and one-class tuning, we find that the instances generated with lhs yield comparable

outlier-detection quality.

4.3 Adversarial Machine Learning
The recent development of Generative Adversarial Networks (GANs) [25] has given adversarial

machine learning much attention. In general, the field is concerned with the robustness of machine

learning with respect to adversarial input and countermeasures [5]. Such adversarial input is

artificial data deemed either evasive or poisonous [31]. Evasive instances fool a trained classifier,

yielding the wrong classification (e.g., spam email that is not classified as such). Poisonous instances,

on the other hand, prevent a classifier from being trained correctly.

In our view, the generation of adversarial input is similar to that of artificial outliers. In essence,

an outlier which is wrongly classified as normal can be a very useful artificial outlier, as illustrated

later in Section 5. The fact that there is an outlier-generation approach using GANs [14, 34] (see

Section 6.1.7 for details) further emphasises the strong connection between artificial outliers and

adversarial machine learning. The idea Goodfellow et al. [25] introduce as GAN is to have two

models, a generative and a discriminative one, that compete against each other. The generating

model tries to generate instances which the discriminator model cannot tell apart from genuine

ones. The generative model is thus encouraged to generate instances as close as possible to genuine

ones. This idea is similar to a generation approach proposed by Hempstalk et al. [27] (Definition 6.4).

However, approaches to generate adversarial inputs tend to be very specific to a classifier or task

they are supposed to attack [7]. Thus, one cannot always use them for the generation of artificial

outliers.

5 PROBLEM DEFINITION
One of the central building blocks for a general perspective on artificial outliers is a unified problem

formulation. Such a formulation that takes into account the different use cases for artificial outliers

described in Section 3 now follows. The integration of artificial outliers within other research fields

given in Section 4 is important here as well, since it frames the distinctive ideas from this field.
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Artificial outliers are expected to approximate instances fromOutGenu(·).Whenwe knowOutGenu(·),
obtaining artificial outliers becomes trivial: We just sample from the distribution that matches

our knowledge. An exemplary scenario is when we want to detect faults in a system, and the

maintainer knows how these faults are distributed. However, one usually does not have any or

has only very limited knowledge of OutGenu(·). To illustrate, it is highly unlikely in the exemplary

scenario just sketched that the distribution of faults is well known without having some faulty

instances. Thus, we have to rely on assumptions on outliers that allow the generation of instances

approximating ones from OutGenu(·). To reflect our limited or missing knowledge on OutGenu(·), we
make assumptions so that outliers generated are as uninformative as possible [52]. That is, they
should disclose only very few characteristics of outliers and hence result in the detection of many

possible types. However, at the same time, we want to make the generated artificial outliers as

interesting as possible. Definition 5.1 formalizes the concept of interesting artificial outliers, and

Example 5.2 illustrates it.

Definition 5.1. A set of interesting artificial outliers IntrArtOuts = {inst1, . . . , instnart } is a set of
instances that solve a use case for artificial outliers well.

Recall the use cases introduced earlier, casting task, one-class tuning or exploratory usage, and
consider the following example.

Outlier 1

Outlier 2

Fig. 3. Illustration of interesting artificial outliers.

Example 5.2. The use case in this example is casting task (i.e., training a classifier for outlier

detection with training data that contains only normal instances). The use case is solved well if the

outlier-detection accuracy is later high. To train the classifier, we use artificial outliers. See Figure 3.

The green line is the best decision boundary between normal and outlier instances. Outlier 1 is

far from any normal instance. Such an outlier is not very useful when training the classifier. It is

rather trivial to classify it as outlying, and it might even pull the decision boundary of the classifier

away from normal instances. Outlier 2, by contrast, is helpful when learning the correct decision

boundary and is thus rather interesting.

The interestingness of artificial outliers depends heavily on the specific application [26, 49]. If

we are interested in the exploratory use case instead of the one from Example 5.2, artificial outliers

far away from normal instances might be interesting as well. This relationship makes a precise and

at the same time general definition of interesting artificial outliers difficult. Another issue is that

interestingness of artificial outliers also depends on the other generated instances. It might well be

that Outliers 1 and 2 in combination lead to a better decision boundary. Definition 5.1 has reflected

this possibility.
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The situation is even more complex, however, since the number of generated outliers is important

as well. Any additional artificial instance increases the computational effort. Thus, we want to

generate as few artificial outliers as possible. This leads to the following definition.

Definition 5.3. A minimal set IntrArtOuts of artificial outliers is a set of interesting ones that has

a minimal number of elements nart and is still interesting.

When generating artificial outliers for a use case, one would like to have a minimal set IntrArtOuts.
However, there is a trade-off. Interesting outliers are often counter to uninformative outliers.

Consider Example 5.2, where we suppose that outliers occur close to genuine instances and not

everywhere. With such additional assumptions, one clearly loses some generality. One could argue

that having some uninteresting artificial outliers is better than losing this generality. However,

in high-dimensional spaces in particular, including uninteresting artificial outliers can soon be-

come very expensive computationally [15, 27, 48, 51]. Hence, existing approaches make different

assumptions about outliers in order to obtain a minimal set IntrArtOuts. This will become apparent

in Section 6 when we describe the approaches. However, having a specific use case in mind, one

must be careful that the assumptions actually fit the use case. For instance, as mentioned before, if

one wants to perform an explorative analysis, generating instances only very close to the boundary

of normal instances tends not to be good.

If artificial outliers are used, usually not only OutGenu(·) is missing, but also NormGenu(·) . Other-
wise, a generative model might be preferable, see Section 4.1. Hence, the generation is based only

on samples from NormGenu(·) possibly mixed with some from OutGenu(·), i.e., on Data. Of course,
it is possible that the instances from Data are not sufficient to represent NormGenu(·) . Think of

the case that there is no instance from Data in a large part of the instance space that should be

regarded as normal. An artificial outlier in this part might then be an outlier regarding Data but
not regarding NormGenu(·) . However, the important assumption behind all generation approaches

is that there is a sufficient number of genuine instances (n) available.
Next to the actual generation of artificial outliers, approaches also exist to filter existing artificial

outliers for interesting ones. That is, instead of generating instances at a very specific location

(for example very close to the boundary), one generates many artificial outliers with some simple

approach and tests which ones are interesting. Some of these filtering approaches have been

proposed together with a specific approach to generate the outliers. However, they might also work

well when the generating approach is a different one. Thus, in the following two sections, we first

describe the different approaches relevant to actually generate artificial outliers and then filtering

approaches.

6 GENERATING APPROACHES
In this section, we review the various generating approaches and put them into context with

the problem formulation from Section 5. This review is another building block of our general

perspective. We start by classifying the generation approaches in terms of how they relate to the

characteristics of Data. We then describe each approach. Approaches with a similar generating

procedure are described together in order to reduce redundancy and improve comprehension. This

description results in two somewhat orthogonal classifications of generation approaches: one based

on the characteristic of Data and one in terms of similar generation procedures.

In terms of retaining characteristics from Data, we group the approaches in six groups, see

Figure 4. They differ in the extent of modeling the dependency on Data, and how well they match

with instances from Data. In terms of the dependency, they either do not model it, do so only

partly, or model all of it. Regarding the match with instances from Data, the artificial outliers can
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Model Dependency?

No Partly Yes

Match Data?

Inverse Boundary Itself

unifBox

unifSphere

marginSample

gaussTail

distBased

boundVal

invHist

negSelect

infeasExam

boundPlace

negShift

ganGen

densAprox

surReg

skewBased

maniSamp

Fig. 4. Classification of generating approaches

be somewhat inversely distributed, close to their boundary or entirely similar. In the following, we

describe the existing approaches, grouped by generation paradigms.

6.1 Sampling from a Distribution
Sampling from a distribution is a common way to generate data. There also exist approaches to

generate outliers with such sampling. The difference among these approaches is the distribution

Out(·) they sample from.

6.1.1 Uniform within a Hyper-Rectangle. Definition 6.1 features the most frequently used distribu-

tion [1, 15, 19–21, 26, 27, 47–49, 51, 52].

Definition 6.1 (unifBox). OutunifBox(·) is a uniform distribution within a hyper-rectangle en-

capsulating all genuine instances. The parameters are nart and the bounds a,b ∈ IR
d
for the

hyper-rectangle.

Instances from Data usually determine the bounds a,b ∈ IR
d
. For this reason, this approach

needs them as input. Tax and Duin [51] and Fan et al. [21] state only that these bounds should be

chosen so that the hyper-rectangle encapsulates all genuine instances. [48] uses the minimum and

maximum for each attribute obtained from Data. Theiler and Michael Cai [52] mention that the

boundary does not need to be far beyond these boundaries. Abe et al. [1] propose the rule that the

boundary should expand the minimum and maximum by 10%. Désir et al. [17] propose to expand

the boundary by 20%. In Section 8.4, we describe the boundaries used in our experiments.

6.1.2 Uniform within a Hyper-Sphere. Tax and Duin [51] propose a straightforward adaptation of

the distribution from the unifBox approach that emphasises generating outliers close to genuine

instances.

Definition 6.2 (unifSphere). OutunifSphere(·) is a uniform distribution in the minimal bounding

sphere encapsulating all genuine instances. The only generation parameter is nart.

There are various approaches to obtain or approximate the minimal bounding sphere (e.g., see

[33]). Tax and Duin [51] propose to use the optimization approach also used when fitting a SVDD.
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Sampling uniformly from a hyper-sphere is not simple. Tax and Duin [51] therefore propose a

method using transformed samples from a multivariate Gaussian distribution.

6.1.3 Manifold Sampling. Davenport et al. [15] propose a generation approach that also uses

hyper-spheres. Similar to unifSphere, the aim is to generate instances close to genuine ones. More

specifically, they want to generate instances within the manifold in which the genuine instances

lie. To model this manifold, they use multiple hyper-spheres. The sampling distribution Out(·) is
formalized in Definition 6.3.

Definition 6.3 (maniSamp). For each insti ∈ Data, let avgDistki be the average distance to its k
nearest neighbors. Then the sampling distribution OutmaniSamp(·) is the union of the hyper-spheres

with center insti and radius avgDistki for i ∈ 1, . . . ,n. The parameters are nart and k .

6.1.4 Using Density Estimation. Hempstalk et al. [27] try to reformulate the casting task use

case so that the set of artificial outliers is close to minimal. For this objective, they find that the

ideal distribution of artificial outliers should be the one of the normal instances. However, since

the distribution of normal instances is usually not known, they propose to estimate it with any

density-estimation technique (see Definition 6.4).

Definition 6.4 (densAprox). OutdensAprox(·) is the result of density estimation on genuine in-

stances. The parameters are nart and the density-estimation technique.

Hempstalk et al. [27] state that any density-estimation technique can be used in principle, as

long as it is possible to draw samples from the density estimate. In their experiments, they use two

variants. In both cases, a certain distribution is assumed and its parameters are estimated from

Data. These distributions are as follows:
• Amultivariate Gaussian distribution having a covariance matrix with only diagonal elements.

That is, attributes are independent.
1

• A product of d Gaussian mixtures, one for each attribute.

6.1.5 Outside of a Confidence Interval. Pham et al. [42] find that outlier instances should be very

different from normal instances. They propose to generate outliers far from most genuine instances

by using the distribution from Definition 6.5.

µ̂(i) µ̂(i) + 3 · σ̂(i)µ̂(i) − 3 · σ̂(i)

D
en
si
ty

Fig. 5. Illustration of D(i)
from gaussTail approach.

Definition 6.5 (gaussTail). Let µ̂(i) and σ̂ (i)
be the mean and standard deviation estimated from

Attribute i in Data. The distribution D(i)
has density zero for any value x ∈ µ̂(i) ± 3 · σ̂ (i)

. Then

OutgaussTail(·) is the product of D(i)
for all attributes. The only parameter is nart.

Pham et al. [42] do not discuss what the density outside the interval µ̂(i) ± 3 · σ̂ (i)
should be like.

In our experiments, we assume D(i)
to be a Gaussian with the density x ∈ µ̂(i) ± 3 · σ̂ (i)

set to zero.

See Figure 5.

1
This actually results in the same generation process Abe et al. [1] proposes for the marginSample approach.
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6.1.6 Inverse Histogram. Désir et al. [17] propose the distribution of outliers to be exactly comple-

mentary to the distribution of normal instances. In other words, they propose to use the distribution

from Definition 6.6.

Definition 6.6 (invHist). Let Hnormal be the normalized histogram of normal instances. Then

OutinvHist(·) has pdf 1 − Hnormal. The parameters are nart and the histogram-estimation technique.

Désir et al. [17] do not discuss details on how to compute the normalized histogram. They do

say that the instance-space boundary (i.e., minimum and maximum of each attribute) should be

increased by 20%.

6.1.7 Generative Adversarial Networks. Dai et al. [14] and Lee et al. [34] propose to use a GAN

[25] to generate artificial outliers. The generator from a trained GAN architecture is an implicit

generative model [14]. Hence, it can generate instances that are similar to the instances it was

trained with (the genuine ones) but does not provide a closed form of their density. The aim of

the generator is to maximize the similarity of generated and genuine instances. Hence, using the

generator to generate outliers is not straightforward. To achieve the generation of outliers, Dai

et al. [14] and Lee et al. [34] follow the same strategy. A penalty term is added to the objective

function of the generator. This penalty encourages a generation of instances further away from

genuine ones. Since both formulations are based on the same idea [34], Definition 6.7 features the

formulation from [14]. We deem it more illustrative for our purpose.

Definition 6.7 (ganGen). Let Z be the distribution of the prior input noise for the generator func-

tion G : supp(Z ) → IR. Let D : IR → [0, 1] be the discriminator function outputting the probability

that an instance is not generated and p(·) an estimate of the density function of genuine instances.

OutganGen(·) is then the distribution of instances sampled from G(Z ) optimized according to

min

G
Eart∼G(Z )

[
log(p(art)) 1(p(art)>ε )

]
+ Eart∼G(Z )[log(1 − D(art))]︸                           ︷︷                           ︸

Original GAN [25]

. (2)

The parameters are nart, ε , the network structure for the GAN architecture, and the density estima-

tion technique from which p(·) resulted.

The first term in Equation (2) intuitively punishes the generator for generating instances that

have a very high density (> ε) according to p(·). Hence, instances are generated in regions of the

instance space with rather low density.

6.2 Shifting Genuine Instances
Approaches in this category modify attribute values of genuine instances to generate outliers.

The approaches infeasExam, skewBased and surReg use random noise that is added to genuine

instances. Both boundPlace and negShift shift genuine instances so that they move away from

other genuine ones.

6.2.1 Plain Gaussian Noise. Neugebauer et al. [40] propose to alter instances with Gaussian noise

and then filter the resulting instances for those far from normal ones (i.e., having a certain distance

to them). Only in the first iteration are normal instances altered; then, only the resulting artificial

outliers are. See infeasExam in Algorithm 1. The approach requires not just genuine instances but

genuine normal ones.

6.2.2 Scaled Gaussian Noise. Deng and Xu [16] propose a so-called skewness-based generation

approach for artificial outliers that uses noise added to genuine instances. Similar to the case in
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Algorithm 1 infeasExam

Parameters: nart, µ, σ , α , ϵ
1: for i ∈ 1, . . . ,n do
2: arti = insti +N(µ,σ ) · α
3: disti = distance of arti to closest normal instance

4: if disti ≥ ϵ then
5: Add arti to artificial outliers ArtOuts
6: end if
7: end for
8: repeat
9: Randomly choose outi from ArtOuts
10: arti = outi +N(µ,σ ) · α
11: disti = distance of arti to closest normal instance

12: if disti ≥ ϵ then
13: Add arti to artificial outliers ArtOuts
14: end if
15: until |ArtOuts| = nart

Algorithm 1, this noise is Gaussian; it is scaled by a parameter α . However, the approach of Deng

and Xu [16] does not make use of any filtering or of several iterations. See Definition 6.8.

Definition 6.8 (skewBased). Let σ̂ (i)
be the standard deviation estimated for Attribute i ∈ 1, . . . ,d ,

and let each rand(i) be a random value drawn from N(0, 1). Further, let

v(i)
:=

σ̂ (i)∑d
j=1 σ̂

(j)
, noise(i) :=

rand(i)∑d
j=1 rand

(j) . (3)

An outlier outskewBased is then generated by

outskewBased = inst + α · (v(1) · noise(1), . . . ,v(d ) · noise(d )), (4)

where inst is a randomly drawn genuine instance. The parameters are nart and α .

6.2.3 Uniform Noise. [48] proposes another approach to generate outliers. The rationale is to

adjust the tightness of artificial outliers around normal instances. The approach adds uniform noise

parameterized with ε ∈ [0, 1] to genuine instances. If ε = 1, the generation will result in samples

from a uniform distribution. If ε = 0, there will be samples of genuine instances. See Figure 6 and

Definition 6.9.

Definition 6.9 (surReg). Let inst be a randomly drawn instance from Data. W.l.o.g., inst ∈ [u, l]d .
Further, let rand(i) i ∈ 1, . . . ,d be random values drawn uniformly from the range ε · (inst(i) − l) to
ε · (u − inst(i)). Then an outlier outsurReg is generated by

outsurReg = inst + (rand(1), . . . , rand(d )). (5)

This procedure is repeated until nart outliers are generated. The parameters are nart and ε .

Experiments in [48] indicate that 0.1 can be a good value for ε , in particular if there are many

attributes. Note that for the surReg approach, the data set must have been normalized to [0, 1].
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l u

u

u− inst
ε(u− inst)

inst− l

Fig. 6. Illustration of the surReg approach.

6.2.4 Using Boundary Instances. Bánhalmi et al. [3] and Wang et al. [54] both present a similar

idea to generate artificial outliers very tightly around the boundary of genuine instances. The idea

is to have a two-stage process. In the first stage, one finds boundary instances (i.e., instances that

“surround” all other genuine instances). They are then used in the second stage to shift genuine

instances away from others. See Figure 7 for an illustration of the approach of Bánhalmi et al. [3].

The approaches by Bánhalmi et al. [3] and Wang et al. [54] differ in the following respects:

(1) How boundary instances are found.

(2) Which instances are shifted.

(3) The magnitude and direction of the shift.

Artifical Outlier

Boundary Instance Separation

Fig. 7. Illustration of boundPlace approach by Bánhalmi et al. [3].

Bánhalmi et al. [3] propose to determine boundary instances with Algorithm 2. The idea is that an

instance is on the boundary if it is linearly separable from its k-nearest neighbors. A hard margin

SVM is thus fitted to separate the instance under consideration from its k-nearest neighbors. If it
finds such a separation, the instance is deemed on the boundary.

The vector vinst in Algorithm 2 is used to compute the shift direction of genuine instances, see

Definition 6.10. The αi s result from fitting the SVM. They weight the contribution of ei to the final

separation.
2

2
See [3] for two refinements of this approach that increase the maximally possible nart.
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Algorithm 2 Boundary detection by Bánhalmi et al. [3]

Parameters: k
1: for inst ∈ Data do
2: Neighs = k-nearest neighbors of inst in Data
3: ei =

neighi−inst
∥neighi−inst∥

∀ i ∈ 1, . . . ,k, neighi ∈ Neighs
4: Separate ei from origin with hard margin SVM

5: if Separation succeeds then
6: inst is boundary instances

7: Save vinst =
∑k

i=1 αiei
8: end if
9: end for

Definition 6.10 (boundPlace). Let Bounds be the set of boundary instances found with Algo-

rithm 2, with V as the set of the vectors vinst saved for each boundary instance found in Algorithm 2.

For an instance inst ∈ Data \ Bounds, let bound ∈ Bounds be the closest boundary instance to inst
with vinst ∈ V. Let ∆ := bound − inst. Further,

CosAngle =
v′inst · (−∆)
∥vinst∥ · ∥∆∥

, Shift =
magni

magni · curv + CosAngle , (6)

where magni and curv are parameters. The instance inst is then shifted by

outboundPlace = inst + ∆ ·
(
1 +

Shift
∥∆∥

)
. (7)

Then outboundPlace is an artificial outlier generated with the boundPlace approach if outboundPlace
is deemed a boundary instance. This procedure is repeated for every inst ∈ Data \ Bounds. The
parameters are k,magni, and curv.

Wang et al. [54] propose different instantiations for Items 1–3. To detect boundary instances,

they rely on Algorithm 3, the border-edge pattern selection (BEPS) algorithm [35]. Like Algorithm 2,

BEPS also relies on the k-nearest neighbors to decide whether an instance inst is on the boundary

or not. However, instead of checking for linear separability using a hard margin SVM, it uses a

technical condition on the vectors from a neighbor to the instance inst (vi ). See [35, 54] for details.

Definition 6.11 (negShift). Let Bounds be the boundary instances found with Algorithm 3. Fur-

ther,

scale =
1

|Bounds| · k
∑

inst∈Bounds

k∑
i=1

|inst − neighi |, (8)

where neighi is the i-th neighbor of an instance inst ∈ Bounds. inst is then shifted by

outnegShift = inst +
norm
|norm| · scale, (9)

where norm comes from Algorithm 3. This procedure is repeated for every inst ∈ Bounds. There is
no parameter.

The scale value determines how far a boundary instance should be shifted. This is based on the

distance of each boundary instance to its k-nearest neighbors. Shifting a boundary instance in the

direction of norm then generates an artificial outlier.



Generating Artificial Outliers in the Absence of Genuine Ones — a Survey 17

Algorithm 3 BEPS Algorithm from Wang et al. [54]

Parameters: None

1: k = ⌈5 log
10
(n)⌉, thresh = 0.1

2: for inst ∈ Data do
3: Neighs = k-nearest neighbors of inst in Data
4: vi =

inst−neighi
∥inst−neighi ∥

∀ i ∈ 1, . . . ,k, neighi ∈ Neighs

5: Calculate norm =
∑k

i=1vi
6: θi = v

′
i · norm ∀ i ∈ 1, . . . ,k

7: l = 1

k
∑k

i=1 1(θi ≥0)
8: if l ≥ 1 − thresh then
9: inst is boundary instances

10: Save norm
11: end if
12: end for

6.3 Sampling Instance Values
Approaches from this category generate outliers similar to the ones in Section 6.2. They do so by

directly using genuine instances. However, instead of creating new attribute values, the current

approaches recombine existing values of genuine instances to form artificial outliers.

6.3.1 From the Marginals. Several articles propose to use marginal sampling to generate outliers [1,

26, 47, 52].

Definition 6.12 (marginSample). Let Norm(i)
Genu(·) be the distribution of Attribute i . Then

OutmarginSample(inst) = Norm(1)
Genu

(
inst(1)

)
· · · · · Norm(d )

Genu

(
inst(d )

)
. (10)

That is, one can generate outliers from OutmarginSample(·) by sampling a value from each attribute

independently. The only parameter is nart.

From Definition 6.12, it follows that OutmarginSample(·) and NormGenu(·) have the same marginal

distributions. However, in OutmarginSample(·), the attributes are mutually independent, while in

NormGenu(·) , they are often not. Definition 6.12 gives the distribution outliers are generated with

explicitly. Thus, marginSample is closely related to the approaches sampling from a distribution

(cf. Section 6.1).

6.3.2 In Sparse Regions. Fan et al. [20, 21] introduce the distribution-based generation approach.

The following summary is based on our understanding of the respective publications which do

not come with an open implementation. The idea is to generate outliers close to genuine instances

while generating more in sparse regions of the instance space. Fan et al. [21] speculate that "sparse

regions are characterized by infrequent values of individual features". Based on this speculation,

Fan et al. [20, 21] propose Algorithm 4 for the generation of outliers.

In Algorithm 4, random instances are drawn from Data for each possible value of each attribute.

The number of instances sampled is anti-proportional to the frequency of that value. Finally, the

value of the sampled instances for an attribute is replaced with a random value from that attribute.

Algorithm 4 can be run several times to generate more outliers.

6.3.3 Minimal and Maximal Value. Wang et al. [53] propose an approach which they call the

boundary value method. The idea is to generate artificial outliers so that they surround the genuine
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Algorithm 4 distBased

Parameters: Number of runs

1: for i ∈ 1, . . . ,d do
2: Uniq = unique values for attribute i
3: freqVal = most frequent value of attribute i
4: countFreq = number of instances with freqVal
5: for val ∈ Uniq do
6: countVal = number of instances with val
7: for j ∈ countVal, . . . , countFreq do
8: Choose inst ∈ Data randomly

9: Choose rand ∈ Uniq \ (val ∪ inst(i)) randomly

10: out = inst with rand for attribute i
11: end for
12: end for
13: end for

Algorithm 5 boundVal

Parameters: nart
1: for i ∈ 1, . . . ,nart do
2: Choose attribute j andm randomly

3: maxValj ,maxValm maximal value of attribute j orm
4: minValj ,minValm minimal value of attribute j orm
5: newj = randomly choose maxValj or minValj
6: newm = randomly choose maxValm or minValm
7: Choose inst ∈ Data randomly

8: outi = inst with newj and newm for attribute j andm
9: end for

instances in each attribute (see Algorithm 5). For each artificial outlier, the values of two
3
randomly

chosen attributes of a randomly chosen genuine instance are replaced with the minimum or

maximum of the corresponding attribute. Whether a value is replaced by the minimum or maximum

of the attribute is also decided by chance.

6.4 Real-Valued Negative Selection
The approach described next does not fit any of the previous categories. The generation is based

on an adaption of the Negative Selection (NS) algorithm [22] from the field of artificial immune

systems. The idea of NS is inspired by T cells from the human immune system. They distinguish

cells that belong to the human body (self ) from ones that do not (other). In NS, one implements a

set of detectors (resembling the T cells) that are then used to distinguish normal (self ) from outlier

(other) instances. However, NS is usable only when the data set can be represented in binary form,

which is to say that each attribute takes the value either 0 or 1. Thus, Gonzalez et al. [23] propose

the Real-valued Negative Selection (RNS) algorithm (see also [24]). The algorithm tries to find a

set of detectors that cover the real-valued instance space not occupied by normal instances. Each

such detector is a hyper-sphere. Figure 8 serves as an illustration. The green line is the boundary

3
If the data set has only two attributes, our implementation replaces the values of only one attribute.
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between normal instances and outliers. The gray circles are the detectors, with the black crosses as

their centers.

Genuine Instances

Fig. 8. Illustration of real-valued negative selection.

In negative selection, the detectors themselves detect the outlier instances (e.g., by checking whether

an instance falls into their vicinity). However, Gonzalez et al. [23] propose the usage of the centres

of the detectors as artificial outliers (see Algorithm 6). An initial set of randomly chosen detectors
4

is iteratively optimized. In each iteration, the detectors are moved away from genuine instances

(medDists < r ) or separated from other detectors (medDists ≥ r ) (see Definition 6.13).

Algorithm 6 negSelect

Parameters: nart, r , η0, , τ , t , k, maxIter, match(·, ·)
1: Detects = nart random detectors with age 0

2: for iter ∈ 0, . . . ,maxIter do
3: ηiter = η

− iter
τ

0

4: for detect ∈ Detects do
5: Neighs = k-nearest neighbors of detect in Data
6: NeighDists = distances of detect to Neighs
7: medDists = median of NeighDists
8: if medDists < r then
9: if age of detect > t then
10: Replace detect by new random detector

11: else
12: Increase age of detect by one

13: detect = detect + ηiter · dirgenu
14: end if
15: else
16: Set age of detect = 0

17: detect = detect + ηiter · dirdetect
18: end if
19: end for
20: end for

4
Gonzalez et al. [23] do not discuss how these are obtained. We simply use the unifBox approach to this end.
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Definition 6.13 (negSelect). The negSelect approach is used to generate artificial outliers,

outlined in Algorithm 6. Here, function match is given by

match(d1, d2) = e−
∥d
1
−d

2
∥2

2r 2 (11)

and dirgenu, dirdetect by

dirgenu =

∑
neigh∈Neighs detect − neigh

|Neighs| (12)

dirdetect =
∑
detect′∈Detectsmatch(detect, detect′)(detect − detect′)∑

detect′∈Detectsmatch(detect, detect′) . (13)

The parameters are ndetects, r , η0, , τ , t , k , and maxIter.

The function match in Definition 6.13 determines how well two detectors match (i.e., cover the

same instance space), while dirgenu is the direction in which a detector is shifted to move it away

from genuine instances. The direction dirdetect is used to move a detector away from other detectors.

6.5 Discussion
We conclude this section with a summary and a general comparison of the generation approaches

presented. We have classified the approaches by their connection to the genuine instances (cf.

Figure 4) and by the type of procedure used to generate the outliers (Sections 6.1 to 6.4). The results

of our experimental study suggest that for the one-class tuning or casting task use case, artificial

outliers similar to genuine instances (e.g., densAprox or skewBased) seem to be interesting (cf.

Definition 5.1). Hence, Figure 4 offers a useful resource to guide the selection of a suitable generation

approach.

A comparison of approaches within a specific category like sampling from a distribution is difficult,

since generation approaches tend to differ significantly also within a category. For example, within

the category just mentioned, the approach based on a simple uniform distribution (unifBox)

requires only the attribute bounds to be estimated. The approach utilizing GANs (ganGen) in

turn requires a deep neural network to be trained. Differences like this one arise throughout

the surveyed approaches and make finding general benefits or drawbacks difficult. Regardless of

these difficulties, we give some general results from comparisons in the following. The category

described in Section 6.1 comprises the highest number of approaches. Their joint idea is to first fit a

distribution to the data and then generate artificial outliers by sampling from this distribution. The

fitting of the distribution can be quite resource-intensive, for instance for the ganGen approach,

but it is easy to generate any amount of artificial outliers with sampling. As mentioned, not all

approaches require many resources to fit the distribution, though. Approaches that generate outliers

by shifting genuine instances (Section 6.2) or sampling instance values (Section 6.3) usually require

less computational effort in advance of the generation of outliers. Additionally, the direct use of

genuine instances tends to yield artificial outliers close to these genuine instances (cf. Figure 4).

Sampling instance values (Section 6.3) has similar drawbacks and benefits, but is simple to perform.

The negSelect approach is the only one described in Section 6.4. It features a generation paradigm

that differs substantially from the procedure of other approaches. The iterative optimization of

the initial set of artificial outliers is resource-intensive, but does not allow for the straightforward

generation of more artificial outliers a posteriori, unlike approaches that sample from a distribution.

In summary, we find it difficult to say which procedure or connection to genuine instances

is preferable. All approaches presented incorporate ideas that can be useful, or they generate

interesting artificial outliers.
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7 FILTERING APPROACHES
Having described the existing generation approaches, we now turn to the approaches that filter

generated instances for interesting ones. This is the last building block for our general perspective

on artificial outliers.

We group the filter approaches in two groups: those that use a classifier and those that compute

and use some statistic. “Artificial instances” refer to instances generated, and “artificial outliers”

to those resulting from filtering the artificial instances. Therefore, the artificial outliers should be

interesting and close to minimal (see Definitions 5.1 and 5.3).

7.1 Using a Classifier
Fan et al. [21] propose an iterative approach to filter artificial instances so that they are further

from genuine ones (see Algorithm 7). In each iteration, a classifier is trained to distinguish between

the genuine instances from Data and the generated instances. Then, the artificial instances that are

classified as genuine are replaced with newly generated instances. This process is repeated until

only very few artificial instances are removed in an iteration.

Algorithm 7 Filter using a classifier by Fan et al. [21]

Parameters: Data, Generation Approach, Classifier Model, maxRem
1: Arts = nart artificial instances
2: repeat
3: Train classifier with Arts ∪ Data
4: removed = 0

5: for art ∈ Arts do
6: Predict class of art with classifier

7: if Predicted class is genuine then
8: Replace art with new generated instance

9: removed = removed + 1
10: end if
11: end for
12: until removed ≤ maxRem

Abe et al. [1] apply what they call ensemble-based minimum margin active learning. It combines

the ideas of query by committee and of ensembles. Several classifiers are trained one after another,

each one on a sample of the genuine and the artificial instances. At the end, all classifiers are

combined in an ensemble, yielding the final classifier. The filter is the sampling procedure that

selects the instances used to train a new ensemble member.

Definition 7.1 (Filter with Query by Committee). Let Classifiers = {C1, . . . ,Cm} be a set of m
classifiers that have been trained one after another. Let Cout(inst) be the probability that Classifier

C ∈ Classifiers classifies inst as an outlier. Analogously, Cnorm(inst) is the probability of C classifying

inst as normal. Let

margin(Classifiers, inst) =
∑

C∈ Classifiers

Cout(inst) − Cnorm(inst) (14)

and

gauss(µ,σ , ξ ) =
∫ ∞

ξ

1

σ
√
2π

e
−(x−µ )2

2σ 2 dx , (15)
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where Equation (15) is used only to simplify Equation (16). Then, the filter with query by committee
is as follows: An instance inst ∈ DataExt is kept with probability

gauss
(
µ =

m

2

, σ =

√
m

2

, ξ =
m +margin(Classifiers, inst)

2

)
. (16)

The function margin(·) computes the disagreement among the classifiers on the class of inst.
The function gauss transforms this disagreement into a probability and is similar to the CDF of a

Gaussian distribution. Thus, artificial instances for which there is much disagreement among the

classifiers are kept with a higher likelihood. Note that the filtering fromDefinition 7.1 is probabilistic.

That is, running the filter again can lead to other artificial outliers. A very similar idea has been

proposed by Curry and Heywood [12]. However, instead of the filtering from Definition 7.1, they

make use of the so-called balanced block algorithm [13].

7.2 Using a Statistic
Instead of using a classifier to filter artificial instances, several filtering approaches make use of a

statistic computed based on the artificial and the genuine instances.

Definition 6.10 has featured the filter introduced in [3]. The statistic computed comes from

Algorithm 2, which checks whether an instance is a boundary instance. Any generated instance

that is not a boundary instance according to Algorithm 2 is filtered out. The filter proposed in [40]

has also been described already, in Algorithm 1. The statistic computed is the distance from an

artificial instance to its nearest genuine neighbor. Only if this distance is greater than a certain

threshold is the artificial instance deemed an outlier.

Davenport et al. [15] propose a filter which they call thinning. The idea is to filter artificial

instances so that the remaining ones are well spread across the whole instance space and have a

distance to each other that is as large as possible. This proposal resembles the idea behind the lhs

approach from Definition 4.1 (see Definition 7.2).

Definition 7.2 (Filter through Thinning). Let disti, j be the Euclidean distance between two artificial
instances insti and instj . Then the filter through thinning is as follows:

(1) Find the i , j ∈ 1, . . . ,nart for which disti, j is the smallest.

(2) Remove the instance from {insti , instj } which has a lower distance to its nearest neighbor.

The filter from Definition 7.2 must be applied several times to ensure evenly spread artificial

outliers.

Definition 7.3 is another filtering method, proposed in [48]. The objective has been to filter the

artificial instances hidden in certain attribute subsets (i.e., not detectable as outliers in some subsets,

but detectable in others). Hence, the approach checks for each such attribute subset with some

unsupervised outlier-detection technique if the artificial instance is outlying or normal with respect

to the genuine instances. The unsupervised outlier-detection technique can be thought of as a

statistic computed on the instances. For example, with the (k, dmax)-outlier definition [30], an

instance is an outlier if at most k other instances are closer to it than to dmax.

Definition 7.3 (Filter with Unsupervised Detection). Let OutDet(·) be an unsupervised outlier-

detection technique; that is, given a set of instances, OutDet(·) determines which ones are normal

or outlying. The filter with unsupervised detection works as follows: An artificial instance inst is
kept if either OutDet(inst) = outlier or OutDet(inst) = normal holds. Whether normal or outlier has

to hold is a parameter of this filter.

Note that in [48], depending on the attribute subset,OutDet(·) sometimes filters artificial instances

deemed outlying and sometimes instances deemed normal. To obtain artificial outliers that are
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rather far away from genuine instances, similarly to Algorithm 7, one only needs to filter for

artificial instances OutDet(·) deems outlying.

7.3 Discussion
The number of approaches to filter generated instances is much smaller than the number of

approaches to generate them. We categorize the known approaches in two groups: in one group,

a classifier is used to filter generated instances, and in the other group, certain statistics. Filter

approaches that use a classifier are usually more time-consuming, since the training of the classifiers

has to happen multiple times. The filter approaches that utilize statistics are usually much faster.

However, the filter using unsupervised outlier detection methods can be computationally heavy as

well, depending on the detection method used.

Whether it makes sense to use a filter approach ultimately depends on the use case and the

approach used to generate artificial outliers. The thinning filter (Definition 7.2), for instance, can be

quite useful in the casting task use case. It renders the artificial outliers more uniformly distributed

within the instance space, which can be advantageous for that use case [49].

8 EXPERIMENTS
So far, we have presented our general perspective on artificial outliers, including the various

approaches to generate artificial outliers in Section 6 in particular. We now experiment with them

for insights that also extend to a practical level. We list three aims behind such experiments.

Aim 1: To our knowledge, most presented generation approaches have never been compared to

each other systematically. We aim to make exactly this comparison.

Aim 2: Section 3.2 has explained that the two use cases casting task and one-class tuning are

similar. Both result in outlier detection based on classification. Thus, another aim of our experiments

is to study the quality difference in the resulting detection. Not only have both use cases received

much more attention in the literature than the third use case, exploratory usage, but we are also
unaware of any design of experiments which have taken place to compare artificial outliers in terms

of an exploratory usage. For this reason, our experiments focus on the casting task and one-class
tuning use cases. Since both use cases are based on classification, we refer to them by the respective

classifiers.

Aim 3: Some characteristics of certain types of artificial outliers in terms of the underlying

data set are known. For example, consider that the outlier-detection quality with some generation

approaches decreases with an increasing number of attributes [15, 27, 48, 51]. In our experiments

we also analyze these characteristics more closely, for example how prominent such effects are.

In the remainder of this section, we first describe the workflow of our experiments. We then

describe the data sets and classifiers used and discuss the parametrization of the generation

approaches. Next, we describe the statistical tools we use to analyze our experimental results. We

then describe general outcomes from the experiments. Finally, we analyze the results in terms of

the different classifiers, the generating approaches used, and the data-set characteristics.

8.1 Workflow
Algorithm 8 is the workflow for our experiments. For each data set and each classifier, we use the

generating approaches presented in this survey for training. We then test each classifier on all types

of outliers. With types of outlier we refer to outliers generated with some approach as well as the

genuine outliers. For instance, one type of outliers is “genuine outliers”, while another is “artificial

outliers generated with unifBox”. The label for training or testing the classifier is whether an

instance is a normal genuine instance or an outlier. To evaluate a detection, we use the Matthews

correlation coefficient (mcc), which is particularly suited if the classes can be imbalanced [6].
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This is essentially the correlation between predicted and ground-truth instance labels. Each such

experiment is repeated 20 times. The code for our experiments is publicly available.
5

Algorithm 8 Experiment Workflow

Require: A set of data sets Datas, a set of classifiers Classifiers and a set of generation ap-

proaches
6Generations.

1: for each Data ∈ Datas do
2: for each C ∈ Classifiers do
3: Norms = normal instances from Data
4: TrainNorms = random sample of Norms with 70% of Norms size
5: TestNorms = Data \ TrainNorms
6: Outs = genuine outliers from Data
7: for each gen(·) ∈ Generations do
8: Train C with gen(TrainNorms) ∪ TrainNorms
9: for each gen(·) ∈ Generations do
10: Predict class of gen(TrainNorms) ∪ TestNorms with C
11: Save Matthews correlation coefficient (mcc)

12: end for
13: Predict class of Outs ∪ TestNorms with C
14: Save Matthews correlation coefficient (mcc)

15: end for
16: end for
17: end for

8.2 Data Sets Used
The data sets we use is a suite of common outlier-detection-benchmark data sets. We use most data

sets proposed in [8]. These are mostly classification data sets in which one class is deemed outlying.

We exclude the data sets Arrythmia and InternetAds due to their very high number of attributes

(259 and 1555). These data sets would extremely increase the runtime of our experiments. We

add, however, the musk2 data sets from [18] with a reasonable number of attributes. This addition

leaves us with the data sets displayed in Table 7. As proposed in [8], each data set is scaled so that

Data ∈ [0, 1]d , and duplicate instances are removed. To reduce the run time of our experiments,

data sets with more than 1000 instances are downsampled to 1000 instances. The outlier and normal

classes are downsampled so that their initial ratio remains. With Data we refer to a data set where

each labeled outlier is removed.

8.3 Classifiers Used
The difference in the use cases casting task and one-class tuning from Section 3 is that casting task
uses a binary classifier and one-class tuning a one-class classifier. There is one family of classifiers

that exists in the binary case as well as in the one-class case, namely SVMs. For this reason, we

use SVMs in our experiments. While the one-class SVM only needs a single class of instances (e.g.,

normal ones) for training, the binary SVM needs two. Both SVMs use linear separation to perform

their classification. Projecting the data into a kernel space generalizes the linear separation to take

5
Available at ipd.kit.edu/mitarbeiter/steinbussg/exp-artificial-outliers-FINAL-V3.zip.

6
A generation approach in this algorithm is represented by a function gen(·) which has only a data set as input. Some

approaches require additional inputs. See Table 2 for their values.

ipd.kit.edu/mitarbeiter/steinbussg/exp-artificial-outliers-FINAL-V3.zip
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any non-linear form (see [26]). The binary SVM tries to find the best separation of the two classes.

A common version of the one-class SVM, in turn, tries to separate all available instances from the

origin of the transformed space. This trick allows the one-class SVM to train with instances from

only a single class (see [46]).

The binary as well as the one-class SVM have two different formulations. The binary SVM can be

formulated as C-SVM or ν -SVM [10]. The main difference is that they feature different parameters.

While the C-SVM features a parameterC ∈ (0,∞), the ν -SVM features ν ∈ (0, 1]. In our experiments

we use both, as described later. The one-class SVM is formulated as described above in [46] and

is called ν-support classifier. Tax and Duin [51] formulate another version, the SVDD. The two

types, however, give identical decision functions when using the Gaussian kernel [32]. We use the

formulation from [46] in our experiments with this kernel.

Algorithm 9 Hyperparameter tuning

Parameters: DataExt, νrange, srange
1: Set ErrBest = inf

2: for each hyperparameter combination (ν , s) do
3: Train SVM with (ν , s)
4: ErrArt = error on artificial outliers from DataExt.
5: ErrGenu = error on genuine instances from DataExt.
6: Err = 0.5 ∗ ErrArt + 0.5 ∗ ErrGenu
7: if Errbest > Err then
8: ErrBest = Err
9: (νOptimal, sOptimal) = (ν , s)
10: end if
11: end for

The aim with the one-class tuning use case is to find optimal hyperparameters. For this search,

we use the approach from [54] displayed in Algorithm 9. It is a grid search over hyperparameters ν
and s . The values with the lowest error are chosen as the final model. As in [54], we use νrange =
{0.001, 0.05, 0.1} and srange = {10−4, 10−3, . . . , 104}. This approach is referred to as one-class. For
the binary SVM in the casting task use case, we have implemented two approaches. One approach

is to just use a C-SVM with the default values from the respective implementationC = 1 and s = 1

d ,

subsequently referred to as binary. The second approach is to optimize ν and s of a ν-SVM using

Algorithm 9. We refer to this as binaryGrid. In summary, we use three types of classifiers: binary
and binaryGrid for the casting task use case and one-class for the one-class tuning use case.

8.4 Generation Approaches
We do not vary the parameters of the generation approaches but use their default values if applicable.

They are listed in Table 2. The parameter nart is always set to n in our experiments. That is, the

number of genuine and artificial instances is equal if the approach has this parameter. The bounds

for the unifBox approach are extended by 10%, as proposed in [1]. We find this a good compromise

between no extension and the 20% increase proposed in [17]. We perform density estimation in the

densAprox approach with a multivariate Gaussian having a covariance matrix with only diagonal

elements. For the surReg approach, we choose ε = 0.1, as suggested by the experiments in [48].

We exclude the invHist and infeasExam approaches from our experiments, since they have been

proposed specifically for data sets with very few attributes. We also have excluded boundPlace,

distBased, and negSelect, because of enormous runtimes of our respective implementations,
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Table 2. Overview of used parameters and approaches. If applicable nart is set to n.

Approach Suggested Parameter Value(s) Used Parameter Value

unifBox Increase of bounds: 0%, 10%, 20% 10%

lhs — —

unifSphere — —

maniSamp Number of nearest neighbors: 10 10

marginSample — —

boundVal — —

densAprox Single Gaussian or mixture Single Gaussian

surReg ε = 0.1 0.1

skewBased α = 2 2

negShift — —

gaussTail — —

which an experienced programmer from our institution has put together. A single execution of

distBased — the fastest approach of these three excluded ones — takes more than 50 seconds on a

data set with 30 attributes and 650 genuine instances. This is roughly the average size of the data

sets in our experiments. We have to execute each approach for 20 iterations, 16 data sets, and for

training as well as for testing three classifiers in combination with 11 other generation approaches

(cf. Algorithm 8). With the distBased approach, the runtime is very high because our data sets are

not categorical. Thus, counting the number of occurrences of the values of all attributes in addition

to the procedure to look up a new random value becomes very expensive. The requirement “low

runtime” also is the reason that we have not implemented nor included ganGen. Training a GAN

architecture is extremely resource-intensive.

8.5 Statistical Tools
A direct comparison of the mcc scores is not very useful due to the many factors influencing

the scores. Hence, we want to analyse our results statistically by performing an Analysis of

Variance (ANOVA) [2]. This analysis allows us to check whether and how strongly the experimental

parameters affect the mcc scores. We then analyze these effects in more detail with a post hoc
analysis [38]. Finally, the Kendall’s Tau coefficient [44] is used to determine the effect of certain

data characteristics.

8.5.1 ANOVA. From Algorithm 8, we see that there are four parameters for a specific experiment.

The classifier (C), the underlying data set (Data), the generation approach the classifier is trained

with (trainGen), and the type of outliers the classifier is tested on (testOuts). We refer to these four

as main factors. The ANOVA partitions the variation of a dependent variable, here the mcc score,

according to so-called sources. There are three types of sources: the main factors just mentioned,

their interactions, and the residuals. The interactions between main factors, denoted by Inter(·), are
used to account for the joint effect of several main factors, for example if the choice of classifier is

not independent of the underlying data set (Inter(1, 4) in Table 3). To explain residuals, observe that

the basis of the ANOVA is regression. The residual source is the variation that cannot be accounted

for using this regression. Each source except for the residual one has a specific number of levels. A

level of a source is a particular value that it takes. For the main factor C, for example, the levels are

binary, binaryGrid, and one-class. To perform the ANOVA, one obtains the sum of squares attributed

to the different sources from the regression model. These and their degrees of freedom are used
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to compute the F-Value. The number of degrees of freedom of a source is given by the number of

levels of the source minus one. For example, the classifier has three levels. Hence, the number of

degrees of freedom for this source is 2. With the F-value, one can perform a statistical test, given in

Hypothesis Test 1. The p-value of this test is computed using the F distribution parameterized by

the number of degrees of freedom — the distribution of the F-Value under the null hypothesis.

Hypothesis Test 1 (ANOVA F-test). Let µi be the mean of the dependent variable for level i
from a source with L levels. Then the null and alternative hypothesis of the ANOVA F-test are

H0 : ∀ i, j ∈ 1, . . . ,L : µi = µ j (17)

and

HA : ∃ i, j ∈ 1, . . . ,L : µi , µ j . (18)

The ANOVA F-test thus checks whether the mean of at least one level is different from the

mean of the other levels. In addition to this test, one can compute the partial omega squared (ω2

P )

values [41] using the ANOVA. The value for ω2

P gives the importance of the respective source in

explaining the variation in the mcc score. A high ω2

P means that this source accounts for a rather

large part of the variation in the mcc score.

8.5.2 Post Hoc Analysis. Following an ANOVA, one usually performs a post hoc analysis [38].

Any source for which the Hypothesis Test 1 is significant is analysed in more detail. With the

ANOVA F-test, one can conclude only that the mean of at least one level differs significantly from

the mean of at least one other level. However, it usually is interesting for which levels this is

the case. Hence, for each pair of levels in a significant source, one computes whether there is a

difference or not. This is what is done in a post hoc analysis. Clearly, the pairwise tests in a post hoc
analysis are a case of multiple testing [38]. Hence, the p-values need to be adjusted accordingly.

We use the Holm–Bonferroni method [29] to this end. Usually a simple Student’s t-test is used to

compare the means of two levels [38]. However, since there are many significant interactions in

our ANOVA result, the assumptions behind the Student’s t-test are usually violated. Hence, we use

a non-parametric alternative: the Mann–Whitney U test [37].

Hypothesis Test 2 (Mann–Whitney U Test). Let Li and Lj be the distribution function of the
dependent variable within Levels i and j of a source. Then the null and alternative hypothesis of the
Mann–Whitney U test are

H0 : Li (x) = Lj (x) ∀ x ∈ [0, 1] (19)

and

HA : Li (x) > Lj (x) or Li (x) < Lj (x) ∀ x ∈ [0, 1]. (20)

That is, one variable is stochastically larger or smaller than the other one.

A level that is stochastically greater than another indicates a preference. To illustrate, if the

one-class classifier is stochastically greater than the binary one, it usually yields higher mcc scores.

Along with the pairwise test from Hypothesis Test 2, we provide level-wise means, medians, and

density plots of the mcc score when applicable. This indicates the direction of the stochastic order.

For greater clarity, the result of pairwise tests can be presented in the form of letters [43]. We use

the letters a to z. Every level is assigned a combination of letters, often only a single one. If two

levels share a letter, the respective test is not significant; that is, HA from Hypothesis Test 2 cannot

be accepted.
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8.5.3 Kendall’s Tau Coefficient. When analysing the results of our experiments in terms of the

different Data, we are interested in the effects of the number of instances n and the number of

attributes d . Hence, we are interested in the dependency of the mcc score on n or d . A common

estimate for a monotonic relationship between two random variables is Kendall’s Tau (τ ) [44]. The
situation of τ = 0 indicates that there is no dependency, τ > 0 stands for a joint increase, and τ < 0

indicates that an increase in one variable leads to a decrease in the other. We make use of the Tau

test [44] formalized in Hypothesis Test 3 to test whether the estimated τ is significant.

Hypothesis Test 3 (Tau Test). Let X and Y be two random variables with τ = τ0. The null and
alternative hypothesis of the tau test are

H0 : τ0 = 0 and HA : τ0 , 0. (21)

Similarly to the previous test, we have to account for multiple testing. We again apply the

Holm–Bonferroni method [29].

8.6 Performing the ANOVA
The factors in our experiments have many levels: C has 3; Data, 16; trainGen, 11: and testOuts,
12. We think that this large number of levels and factors makes a full ANOVA with all possible

interactions difficult to interpret. To reduce the number of levels, we use an aggregated type of

testOuts: the genuine outliers from Data (trueOuts) and the median of all generating approaches

(artOuts). We aggregate the result on all generation approaches since we are not very interested

in the detection quality of a single type of artificial outliers. A low detection quality could, for

example, mean simply that these outliers are easy to detect and not offer any insight into the ability

of the specific classifier to detect various types of outliers. The results of the ANOVA are displayed

in Table 3.

Table 3. Four-Way Anova from Experiments.

Source

Sum of

Squares

Degrees of

Freedom

F-Value ω2

P

Data1 366.82 15 2319.90 0.62

trainGen2 265.90 10 2522.51 0.54

Inter(1, 3) 191.31 15 1209.93 0.46

Inter(1, 2) 182.84 150 115.63 0.45

Inter(1, 2, 3) 166.33 150 105.19 0.43

testOuts3 148.82 1 14117.71 0.40

Inter(1, 2, 4) 124.99 300 39.52 0.35

Inter(2, 4) 106.72 20 506.20 0.32

Inter(2, 3) 87.96 10 834.43 0.28

Inter(1, 2, 4, 3) 61.52 300 19.45 0.21

Inter(1, 4) 44.32 30 140.13 0.17

Inter(1, 4, 3) 18.25 30 57.71 0.07

Inter(2, 4, 3) 17.54 20 83.22 0.07

C4
1.26 2 59.59 0.01

Inter(4, 3) 0.45 2 21.34 0.00

Residuals 211.50 20064
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The F-tests for each source yield a highly significant result (p-values < 6 · e−10). Thus, at least
one mean within the different levels of each source significantly differs from the other levels. We

conclude that each source listed in Table 3 determines to some extent whether the mcc score of an

experiment is high or low on average. The significance of all possible interactions means that the

main factors influence each other. For example, the choice of a classifier type has an impact on the

generation approach for outliers that results in a high mcc score on average. This finding coincides

with what Hastie et al. [26] and Steinwart et al. [49] have hypothesized. Note that the necessary

assumption for ANOVA of standard normal residuals with equal variance is not fully met in our

case. Thus, the p-values of the F-test and the ω2

P values might not be exact. Our subsequent post
hoc analysis does, however, confirm the tests regarding the main factors.

8.7 Classifier Comparison
From the ω2

P values in Table 3, we see that the type of classifier (C) itself has a rather small impact

on the variation of the resulting mcc scores. As such, it is not important to explain a high or low

mcc score. Interestingly, some interactions involving the classifier are ranked much higher, the

one of classifier and trainGen, for example. Hence, it is more important that the classifier and the

generation approach for outliers fit. However, we are interested in the exact differences of the types

of classifier. Table 4 features the results of the respective pairwise Mann–Whitney U test.

Table 4. Comparison of different types of classifier.

C Mean Median Test Result

binaryGrid 0.31 0.24 b

one-class 0.30 0.24 b

binary 0.29 0.23 a

We see that the one-class and binaryGrid classifier have the same group letter. Hence, there seem

to be few reasons to prefer one over the other. The binary classifier is in its own group, indicating

a significant difference from the former two. The mean and median mcc score are lowest. However,

the difference is tiny. This results differ somewhat from the results of the small study in [15]. The

results in [15] suggest that the casting tasks use case (binary/binaryGrid classifier) is preferable. To

further elaborate on the difference in distributions of the classifier types, we visualize the estimated

probability density of the mcc score for the different classifier types in Figure 9. The figure visually

supports that the differences are not great, but the binaryGrid or one-class classifier are more likely

to result in high mcc scores.

8.8 Comparison of Generation Approaches
The ω2

P values in Table 3 for the two factors that relate to generation approaches, trainGen and

testOuts, are quite high — for trainGen, in particular. Thus, they account for a large part of the

variation in the mcc score. The interpretation of the generation approaches for trainGen and testOuts
differ greatly. We start with the results in terms of trainGen and then analyze the results regarding

testOuts. Figure 10 displays the mcc score probability density regarding the levels of trainGen and

testOuts.

8.8.1 Artificial Outliers for Training. The ω2

P of trainGen is the second highest in Table 3. Thus,

certain significant differences in detection quality appear when using different generation ap-

proaches to train the classifiers. Table 5 lists the results of the pairwise Mann–Whitney U tests. The
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artOuts trueOuts

-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0

0

2

4

6

8

mcc

D
e
n
s
i
t
y

trainGen
boundVal

densAprox

gaussTail

lhs

maniSamp

marginSample

negShift

skewBased

surReg

unifBox

unifSphere

Fig. 10. Density of mcc score with different generation approaches.

approaches boundVal and maniSamp form a group, and unifBox, lhs, unifSphere and negShift

form one as well. The elements of the second group, in particular, are conceptually quite similar.

For example, three of the four approaches spread outliers uniformly. The approaches with the

highest mean and median are densAprox and skewBased. Both try to generate outliers similar to

the genuine instances. The densAprox approach does this quite literally. Hence, we conclude that

this is a generally useful approach to generate outliers that classifiers are trained with. Somewhat

contradictory to this conclusion, however, is that the surReg approach, which also generates

outliers similar to genuine instances, shares the lowest mean and median with gaussTail. From

Figure 10, we see that both approaches often result in an mcc score close to zero. Hence, training

the classifier using artificial outliers generated by surReg or gaussTail seems to result in a rather

low detection quality. For the gaussTail approach, we think that this is because the generated

outliers are too far from genuine instances to be interesting (cf. Example 5.2). The distribution

of outliers generated by the surReg approach is heavily influenced by the attribute bounds. This

influence might lead to an uneven coverage of the instance space around genuine instances. It

might also be that instances generated with surReg are too close to genuine ones to be interesting,
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which would explain the low mcc score when outliers generated with surReg are used to test a

classifier (cf. Table 6).

Table 5. Comparison of artificial outliers for training.

trainGen Mean Median Test Result

densAprox 0.47 0.49 b

skewBased 0.41 0.42 e

marginSample 0.39 0.34 a e

boundVal 0.37 0.35 a

maniSamp 0.37 0.33 a

negShift 0.28 0.22 d

lhs 0.26 0.21 d

unifBox 0.26 0.21 d

unifSphere 0.25 0.21 d

gaussTail 0.11 0.00 c

surReg 0.11 0.00 f

8.8.2 Artificial Outliers for Testing. Since we aggregate all artificial outlier-generation approaches

for the ANOVA, trainGen has only two values: artOuts and trueOuts. Hence, we can conclude

immediately that there is a significant difference in the mean mcc score of the two (cf. Table 6).

This implies that there is quite a gap between the quality we assign to a detection method when

we evaluate it with the artificial outlier types presented or the labeled ground truth outliers from

the benchmark data sets. This is also clearly visible in Figure 10. We hypothesize that this is

mainly because most artificial outliers are much simpler to identify as such. For example, artificial

outliers generated with the unifBox approach tend to be quite far from genuine instances and are

hence trivial to classify as outlying. Thus, when using artificial outliers to assess the quality of an

outlier-detection method, one should consider how difficult the generated outliers generally are to

detect. We also think that using several types of outliers (i.e., generated with different approaches)

offers much useful insight into the performance of outlier-detection methods.

Although we have aggregated the generation approaches used for testing the classifiers when

performing the ANOVA, we are nevertheless interested in the differences of the generation ap-

proaches presented. Note that a high mcc value here means that the outliers generated are generally

easy to detect. Table 6 lists the results of corresponding pairwise Mann–Whitney U tests. The mean

and median of the aggregated version artOuts are also listed as references. Approaches used to test

the classifiers do not group much; only lhs and unifSphere are in one group. We also observe that

the ranking of generation approaches in Table 6 is to some extent inverse to the one in Table 5.

For example, gaussTail is listed first in Table 6 but second-to-last in Table 5. We think that this

listing further supports our previous hypothesis on the successful generation approaches to train a

classifier. Training a classifier with outliers that are somewhat similar to the genuine instances,

and hence more difficult to detect, results in a better detection method.

8.9 Data Characteristics
From the ANOVA results in Table 3, we see that the underlying data set Data is quite important

to determine if the mcc score of an experiment is rather high or low on average. A more detailed

analysis regarding the effect of Data can be found in Table 7 with the pairwise Mann–Whitney
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Table 6. Comparison of artificial outliers for testing.

testOuts Mean Median Test Result

gaussTail 0.68 0.88 c

unifBox 0.65 0.84 i

lhs 0.64 0.82 d

unifSphere 0.62 0.81 d

densAprox 0.29 0.21 a

boundVal 0.29 0.28 ab

maniSamp 0.29 0.19 b

skewBased 0.28 0.09 e g

trueOuts 0.21 0.18 g

negShift 0.21 0.06 f

marginSample 0.20 0.12 e

surReg 0.05 0.00 h

artOuts 0.38 0.35

U test. Some data sets share a letter and hence do not allow for the acceptance of the alternative

hypothesis that one is stochastically larger than the other one, but most are in different groups.

Table 7. Comparison of different data sets.

Data n d Mean Median Test Result

PageBlocks 1000 10 0.61 0.67 j

Ionosphere 351 32 0.48 0.62 g

Stamps 340 9 0.42 0.43 e

Glass 214 7 0.42 0.39 e

KDDCup99 1000 40 0.38 0.31 h

Wilt 1000 5 0.33 0.21 bc l

Cardiotocography 1000 21 0.32 0.28 d

Pima 768 8 0.29 0.21 cd

Annthyroid 1000 21 0.28 0.25 c

SpamBase 1000 57 0.23 0.18 kl

ALOI 1000 27 0.22 0.06 ab

Parkinson 195 22 0.22 0.22 k

WPBC 198 33 0.16 0.08 f i

musk2 1000 166 0.16 0.00 i

HeartDisease 270 13 0.15 0.13 a

Hepatitis 80 19 0.13 0.09 f

We hypothesize that most of the difference in detection quality is due to the distribution of the

different data sets. However, the numbers of genuine instances or attributes also have an effect.

We also think that the generation approach used to train the classifier has a strong influence on

this effect. Thus, for each level of trainGen, we estimate τ between the mcc and the number of

attributes d as well as the number of genuine instances n. For each τ we also perform a tau test.
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The results are in displayed Table 8, and those with a significant τ (p-value < 0.05) are in bold. The

p-value is abbreviated as pd or pn .

Table 8. Correlation with d and n.

trainGen τ̂d pd τ̂n pn

boundVal -0.13 0.00 0.03 0.21

densAprox 0.05 0.00 0.21 0.00

gaussTail -0.07 0.00 0.05 0.03

lhs -0.24 0.00 -0.04 0.08

maniSamp -0.01 1.00 0.17 0.00

marginSample 0.01 1.00 0.10 0.00

negShift -0.23 0.00 0.01 0.49

skewBased -0.03 0.16 0.17 0.00

surReg -0.06 0.00 0.28 0.00

unifBox -0.28 0.00 -0.04 0.07

unifSphere -0.26 0.00 -0.03 0.11

The τd tend to be negative, indicating a decreasing effect on the mcc score for an increasing number

of attributes. This relation seems to be particularly strong with the unifBox approach. Most of the

τn are significant and positive. Hence, if a higher number of instances has an effect on the resulting

mcc score at all, the effect is usually a positive one.

8.10 Summary of Experiments
A core insight from our study is that there are huge differences in the outlier-detection quality

for different generation approaches and data sets. When used to train a classifier, the overall best

performing approach has been densAprox, with a median mcc of 0.49. The worst ones have been

gaussTail and surReg, both with a median mcc of 0. This result is comparable to those obtained by

random guesses. The data sets form only few groups with no significant difference in terms of the

overall mcc to other data sets. However, there are significant differences between the groups. For

example, with the Ionosphere data set from the group with letter g, the median mcc is 0.62, while it

is only 0.08 with the WPBC from the group with letters fi. All interactions between the main factors

are significant. Thus, the choice of a generation approach in a specific scenario cannot be reduced

to, for example, “densAprox performs best”. Depending on the classifier a scenario requires or

on the data set given by the scenario, different approaches might be suitable. This realization has

motivated us to propose a three-step process, displayed in Figure 11, in order to choose a generation

approach in a specific scenario. The steps are based on the results of our experiments. They help

us to make the necessary decisions when the goal is to detect outliers with the help of artificial

outliers.

Step 1: Type of Classifier. When the ultimate goal is a method to detect outliers, any of the use

cases casting tasks and one-class tuning is applicable. In our experiments, we have found that the

one-class or binaryGrid classifier yield similar mcc scores. However, in a specific scenario the huge

variety of binary classifiers available for the casting task can be advantageous. One example is

when the outlier-detection result should be easily interpretable. A decision tree might then be a

better fit than a one-class SVM.
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Type of Classifier

Generation Approach for Training

Generation Approach for Testing

Fig. 11. Process to choose outlier-generation approach.

Step 2: Generation Approach for Training. One can now check for outlier generating approaches

that are more suitable for the classifier chosen in Step 1. The experimental results displayed in this

survey may be very helpful, but are not necessarily sufficient to this end. Observe, however, that

this article does not explicitly feature the result in every useful representation, to ensure that this

survey still has a reasonable length. The full results are available, however, in combination with

our code. Others can also use the code to test further combinations; this may be particularly useful

when new types of classifiers become available. In addition to the type of classifier used, the data

set of the scenario is of importance. One can, for example, check whether this data set is similar to

one of the data sets from our experiments, or if the number of attributes and genuine instances

is high or low. Depending on these two factors (classifier and data set), one can then choose the

best-suited outlier-generation approach to train the classifier.

Step 3: Generation Approach for Testing. We have seen in Section 8.8.2 that one needs to be care-

ful when assessing the quality of outlier detection using artificial outliers. We think that this

assessment, nevertheless, offers useful insight into the outlier-detection quality. In a real-world

scenario, there might be some knowledge of potential genuine outliers available. Consider a sys-

tem administrator who has a rough idea of how possible outliers might be distributed. Suppose

further that this distribution is somewhat similar to the one of artificial outliers generated by the

negShift approach. Detection quality in terms of artificial outliers generated with negShift is

then clearly a good estimate for the detection quality of genuine instances. However, if there is

no such knowledge, which might be the much more likely case, we conclude that one of the quite

general and uninformative approaches to artificial outliers, like lhs, is well-suited. To gain a better

feel for which types of outliers are and are not well detected, a quality assessment using a variety of

the generation approaches described might also be suitable. However, we leave a systematic study

of this idea into future work because this is not straightforward at all, and it goes well beyond the

scope of this survey.

9 CONCLUSIONS
This section presents a summary of our work and its limitations. Promising directions for future

research are discussed as well.

9.1 Summary
By definition, outliers are instances that are rarely observed in reality, so it is difficult to learn

anything with them. To compensate for this shortage of data, various approaches to generate

artificial outliers have been proposed. This article is a survey of such approaches. As a first step, we

have connected the field of artificial outliers to other research fields. This step allows us to narrow
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down the field of artificial outliers somewhat. The generation approaches described next represent

rather different ways to generate artificial outliers. They form separate groups, depending on the

similarity of the generated instances to genuine ones or on the general generation concept. All this

results in the general perspective on artificial outliers we aimed at.

Depending on the use case for the artificial outliers, different generation approaches might yield

interesting artificial outliers. Our experiments confirm the hypothesis of some authors that, for the

one-class tuning or casting task use case, artificial outliers similar to genuine instances seem to be

interesting. The experiments also confirm that this interestingness heavily depends on the setting

(e.g., the data set used). In terms of the use cases themselves, our experiments suggest that there is

no distinctive differences in outlier detection performance. Analysing the effect of some data set

characteristic with different generation approaches confirms that these can heavily influence the

outlier-detection performance.

To this end, we have also developed a decision process, building on the results of our experiments,

that guides the choice of a good generation approach. In other words, the process targets at finding

a generation approach that yields high outlier-detection quality.

9.2 Limitations
This study focuses on the description, categorization, and comparison of the various existing

generation approaches for artificial outliers. We have not proposed any new generation approach,

but only compared the existing ones, mainly quantitatively. Beyond the detail that is necessary

to this end, we have not yet carried out any further investigation of the behavior of the different

approaches and see this as future work. Besides this, we have not actively questioned the value and

purpose of artificial outliers in addition to what others have already observed. We also do not use

the generation approaches to benchmark outlier-detection algorithms, because this would have

exceeded the scope of this study by much. Nevertheless, our study marks a very good starting

point for anyone interested in the topic of artificial outliers. We do show where the spectrum of

the existing approaches is ranging, how well the approaches perform in specific settings, what is

currently achievable in terms of outlier-generation quality and uncover areas with potential for

future work.

9.3 Future Research Directions
Our study reveals that there are numerous questions regarding artificial outliers that require atten-

tion in the future. One applies to the limit of the similarity of artificial outliers and genuine instances

mentioned earlier. If the distribution of artificial outliers and the one of the genuine instances

completely fall together, there is nothing to gain from the artificial outliers. Thus, investigating

when artificial outliers are “too similar” and no longer useful is an interesting future research

challenge. Another question regards the effect of the number of artificial outliers. Although some

studies have recognized its importance (e.g., in [26]), the issue is often not explicitly addressed.

However, from the connection to generative models (Section 4.1), we see that that number has a

strong effect on the decision of whether an instance is an outlier. We also find it worth investigating

how the various methods to filter artificial instances interact with the generation approaches.

That is, can there be guidelines on when to use which filter? Another interesting future research

direction is the connection of the approaches presented to methods extending a set of genuine

outliers. It could well be that novel approaches can be developed integrating ideas from both fields:

generation with and without genuine outliers. Finally, further assessments of artificial outliers as a

means of evaluating outlier detection would be useful. To illustrate, one way to do so could be to

develop a framework which systematically tests the outlier-detection results with diverse types of

artificial outliers. This might improve the evaluation of outlier-detection methods by much.
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Our study has featured a great variety of approaches for the generation of artificial outliers. The

experimental study we have conducted is a basis for the decision-making process towards a good

outlier-generation approach. The study also has revealed many possible future research directions.

As such, this study is likely to support individuals from diverse fields when developing advanced

approaches for the generation of artificial outliers.
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