skip to main content
10.1145/3447928.3456661acmconferencesArticle/Chapter ViewAbstractPublication PagescpsweekConference Proceedingsconference-collections
poster

Formal safety verification of unknown continuous-time systems: a data-driven approach

Published:19 May 2021Publication History

ABSTRACT

This work studies formal verification of continuous-time continuous-space systems with unknown dynamics against safety specifications. The proposed framework is based on a data-driven construction of barrier certificates using which the safety of unknown systems is verified via a finite set of data collected from trajectories of systems with a priori guaranteed confidence. In the proposed scheme, we first cast the original safety problem as a robust convex program (RCP). Since the unknown model appears in one of the constraints of the proposed RCP, we provide the scenario convex program (SCP) corresponding to the original RCP by collecting finite numbers of data from systems' evolutions. We then establish a probabilistic closeness between the optimal value of SCP and that of RCP. Accordingly, we formally quantify the safety guarantee of unknown systems based on the number of data and the required level of safety confidence.

Motivations. In the past few years, formal methods have become a promising approach to analyze dynamical systems against high-level logic properties, e.g., those expressed as linear temporal logic (LTL) formulae, in a reliable way. In this regard, barrier certificates, as a discretization-free approach, have received significant attention as a useful tool for formal analysis of complex dynamical systems. In particular, barrier certificates are Lyapunov-like functions defined over the state space of systems subjected to a set of inequalities on both the function itself and its time derivative along the flow of the system. The existence of such a function provides a formal certificate for the safety of the system [1, 2].

To employ the proposed approaches in the setting of barrier certificates, one needs to know precise models of dynamical systems and, hence, those approaches are not applicable where the model is unknown. Although there are some identification techniques in the relevant literature to first learn the model and then provide the analysis framework (e.g., [3, 4]), acquiring an accurate model for complex systems is always very challenging, time-consuming, and expensive. This crucial challenge motivated us to employ data-driven approaches and directly construct barrier certificates via data collected from trajectories of unknown systems.

References

  1. S. Prajna, A. Jadbabaie, and G. J. Pappas, "A framework for worst-case and stochastic safety verification using barrier certificates," IEEE Transactions on Automatic Control, vol. 52, no. 8, pp. 1415--1428, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  2. P. Jagtap, S. Soudjani, and M. Zamani, "Formal synthesis of stochastic systems via control barrier certificates," IEEE Transactions on Automatic Control, 2020.Google ScholarGoogle Scholar
  3. L. Wang, E. A. Theodorou, and M. Egerstedt, "Safe learning of quadrotor dynamics using barrier certificates," in 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018, pp. 2460--2465.Google ScholarGoogle Scholar
  4. R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, "End-to-end safe reinforcement learning through barrier functions for safety-critical continuous control tasks," in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 3387--3395.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. P. Mohajerin Esfahani, T. Sutter, and J. Lygeros, "Performance bounds for the scenario approach and an extension to a class of non-convex programs," IEEE Transactions on Automatic Control, vol. 60, no. 1, pp. 46--58, 2014.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Formal safety verification of unknown continuous-time systems: a data-driven approach

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          HSCC '21: Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control
          May 2021
          300 pages
          ISBN:9781450383394
          DOI:10.1145/3447928

          Copyright © 2021 Owner/Author

          Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 19 May 2021

          Check for updates

          Qualifiers

          • poster

          Acceptance Rates

          HSCC '21 Paper Acceptance Rate27of77submissions,35%Overall Acceptance Rate153of373submissions,41%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader