skip to main content
10.1145/3447993.3483265acmconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article

Microphone array backscatter: an application-driven design for lightweight spatial sound recording over the air

Published: 25 October 2021 Publication History

Abstract

Modern acoustic wearables with microphone arrays are promising to offer rich experience (e.g., 360° sound and acoustic imaging) to consumers. Realtime multi-track audio streaming with precise synchronization however poses significant challenges to the existing wireless microphone array designs that depend on complex digital synchronization as well as bulky and power-hungry hardware.
This paper presents a novel microphone array sensor architecture that enables synchronous concurrent transmission of multitrack audio signals using analog backscatter communication. We develop novel Pulse Position Modulation (PPM) and Differential Pulse Position Modulation (DPPM) baseband circuits that can generate a spectral-efficient, time-multiplexing, and multi-track-synchronous baseband signal for backscattering. Its lightweight analog synchronization supports parallel multimedia signals without using any ADCs, DSPs, codecs and RF transceivers, hence largely reducing the complexity, latency, and power consumption. To further enhance self-sustainability, we also design an energy harvester that can extract energy from both sound and RF. We have built a microphone array backscatter sensor prototype using an FPGA, discrete components, and analog devices. Our experiments demonstrate a communication range (sensor-to-reader) of up to 28 meters for 8 audio tracks, and an equivalent throughput of up to 6.4 Mbps with a sample rate over 48KHz. Our sensor achieves 87.4μs of streaming latency for 4 tracks, which is 650x improvement as compared with digital solutions. ASIC design results show that it consumes as low as 175.2μW of power. Three sample applications including an acoustic imaging system, a beamform filter, and a voice control system, all built with our phased-array microphone, further demonstrate the applicability of our design.

References

[1]
S. Gollakota, M. S. Reynolds, J. R. Smith, and D. J. Wetherall. The Emergence of RF-Powered Computing. Computer, 47(1): 32--39, 2014.
[2]
A. Abedi, M. H. Mazaheri, O. Abari, and T. Brecht. WiTAG: Rethinking Backscatter Communication for WiFi Networks. ACM HotNets, 2018.
[3]
B. Kellogg, A. Parks, S. Gollakota, J. R. Smith, and D. Wetherall. WiFi Backscatter: Internet Connectivity for RF-Powered Devices. ACM SIGCOMM, 2014.
[4]
D. Bharadia, K. Joshi, M. Kotaru, and S. Katti. BackFi: High Throughput WiFi Backscatter. ACM SIGCOMM, 2015.
[5]
B. Kellogg, V. Talla, S. Gollakota, and J. R. Smith. Passive Wi-Fi: Bringing Low Power to Wi-Fi Transmissions. USENIX NSDI, 2016.
[6]
V. Iyer, V. Talla, B. Kellogg, S. Gollakota, and J. R. Smith. Inter-Technology Backscatter: Towards Internet Connectivity for Implanted Devices. ACM SIGCOMM, 2016.
[7]
P. Zhang, M. Rostami, P. Hu, and D. Ganesan. Enabling Practical Backscatter Communication for On-body Sensors. ACM SIGCOMM, 2016.
[8]
P. Zhang, D. Bharadia, K. Joshi, and S. Katti. HitchHike: Practical Backscatter Using Commodity WiFi. ACM SenSys, 2016.
[9]
J. -P. Curty, N. Joehl, F. Krummenacher, C. Dehollain, and M. J. Declercq. Model for μ-Power Rectifier Analysis and Design. IEEE Trans. Circuits and Systems, 52(12): 2771--2779, 2005.
[10]
P. Hu, P. Zhang, and D. Ganesan. Laissez-faire: Fully Asymmetric Backscatter Communication. ACM SIGCOMM, 2015.
[11]
P. Hu, P. Zhang, M. Rostami, and D. Ganesan. Braidio: An Integrated Active-Passive Radio for Mobile Devices with Asymmetric Energy Budgets. ACM SIGCOMM, 2016.
[12]
V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith. Ambient Backscatter: Wireless Communication Out of Thin Air. ACM SIGCOMM, 2013.
[13]
A. N. Parks, A. Liu, S. Gollakota, and J. R. Smith. Turbocharging Ambient Backscatter Communication. ACM SIGCOMM, 2014.
[14]
V. Talla, B. Kellogg, B. Ransford, S. Naderiparizi, S. Gollakota, and J. R. Smith. Powering the Next Billion Devices with Wi-Fi. ACM CoNEXT, 2015.
[15]
P. Zhang and D. Ganesan. Enabling Bit-by-Bit Backscatter Communication in Severe Energy Harvesting Environments. USENIX NSDI, 2014.
[16]
P. Zhang, P. Hu, V. Pasikanti, and D. Ganesan. Ekhonet: High Speed Ultra Low-Power Backscatter for Next Generation Sensors. ACM MobiCom, 2014.
[17]
A. Wang, V. Iyer, V. Talla, J. R. Smith, and S. Gollakota. FM Backscatter: Enabling Connected Cities and Smart Fabrics. USENIX NSDI, 2017.
[18]
V. Talla, B. Kellogg, S. Gollakota, and J. R. Smith. Battery-free Cellphone. ACM UbiComp, 2017.
[19]
P. Zhang, C. Josephson, D. Bharadia, and S. Katti. FreeRider: Backscatter Communication Using Commodity Radios. ACM CoNEXT, 2017.
[20]
Y. Ma, Z. Luo, C. Steiger, G. Traverso, and F. Adib. Enabling Deep-Tissue Networking for Miniature Medical Devices. ACM SIGCOMM, 2018.
[21]
X. Xu, Y. Shen, J. Yang, C. Xu, G. Shen, G. Chen, and Y. Ni. PassiveVLC: Enabling Practical Visible Light Backscatter Communication for Battery-free IoT Applications. ACM MobiCom, 2017.
[22]
V. Talla, M. Hassar, B. Kellogg, A. Najafi, J. Smith, and S. Gollakota. LoRa Backscatter: Enabling the Vision of Ubiquitous Connectivity. ACM Ubicomp, 2017.
[23]
Y. Peng, L. Shangguan, Y. Hu, Y. Qian, X. Lin, X. Chen, D. Fang, and K. Jamieson. PLoRa: Passive Long-Range Data Networks from Ambient LoRa Transmissions. ACM SIGCOMM, 2018.
[24]
D. Vasisht, G. Zhang, O. Abari, D. Katabi, H. -M. Lu, and J. Flanz. In-body Backscatter Communication and Localization. ACM SIGCOMM, 2018.
[25]
S. Naderiparizi, M. Hessar, V. Talla, S. Gollakota, and J. R. Smith. Towards Battery-Free HD Video Streaming. USENIX NSDI, 2018.
[26]
J. Zhao, W. Gong, and J. Liu. Spatial Stream Backscatter Using Commodity WiFi. ACM MobiSys, 2018.
[27]
J. Zhao, W. Gong, and J. Liu. X-Tandem: Towards Multi-hop Backscatter Communication with Commodity WiFi. ACM MobiCom, 2018.
[28]
J. Zhao, W. Gong, and J. Liu. Towards Scalable Backscatter Sensor Mesh with Decodable Relay and Distributed Excitation. ACM MobiSys, 2020.
[29]
M. Kotaru, P. Zhang, and S. Katti. Localizing Low-power Backscatter Tags Using Commodity WiFi. ACM CoNEXT, 2017.
[30]
V. Iyer, R. Nandakumar, A. Wang, S. B. Fuller, and S. Gollakota. Living IoT: A Flying Wireless Platform on Live Insects. ACM MobiCom, 2019.
[31]
M. Hessar, A. Najafi, and S. Gollakota. NetScatter: Enabling Large-Scale Backscatter Networks. USENIX NSDI, 2019.
[32]
J. Jang and F. Adib. Underwater Backscatter Networking. ACM SIGCOMM, 2019.
[33]
V. Talla and J. R. Smith. Hybrid analog-digital backscatter: A new approach for battery-free sensing. IEEE RFID, 2013.
[34]
C. Drane, M. Macnaughtan, and C. Scott. Positioning GSM telephones. IEEE Communications magazine, 36(4): 46--54, 1998.
[35]
A. G. Orozco-Lugo, M. M. Lara, and D. C. McLernon. Channel Estimation Using Implicit Training. IEEE Trans. Signal Processing, 52(1): 240--254, 2004.
[36]
Z. Li, M. S. Drew, and J. Liu. 2014. Fundamentals of Multimedia (2nd. ed.). Springer, 145--150.
[37]
N. Roy, S. Shen, H. Hassanieh, and R. R. Choudhury. Inaudible Voice Commands: The Long-Range Attack and Defense. USENIX NSDI, 2018.
[38]
N. Roy, M. Gowda, and R. R. Choudhury. Ripple: Communicating through Physical Vibration. USENIX NSDI, 2015.
[39]
K. Yatani and K. N. Truong. BodyScope: A Wearable Acoustic Sensor for Activity Recognition. ACM UbiComp, 2012.
[40]
www.printedelectronicsworld.com/articles/10275/tiny-soft-and-wearable-acoustic-sensor
[41]
S. Sur, T. Wei, and X. Zhang. Autodirective Audio Capturing Through a Synchronized Smartphone Array. ACM MobiSys, 2014.
[42]
T. Wei, S. Wang, A. Zhou, and X. Zhang. Acoustic Eavesdropping through Wireless Vibrometry. ACM MobiCom, 2015.
[43]
W. Mao, J. He, and L. Qiu. CAT: High-Precision Acoustic Motion Tracking. ACM MobiCom, 2016.
[44]
W. Mao, M. Wang, and L. Qiu. AIM: Acoustic Imaging on a Mobile. ACM MobiSys, 2018.
[45]
A. Wang and S. Gollakota. MilliSonic: Pushing the Limits of Acoustic Motion Tracking. ACM CHI, 2019.
[46]
M. Katanbaf, A. Weinand, and V. Talla. Simplifying Backscatter Deployment: Full-Duplex LoRa Backscatter. USENIX NSDI, 2021.
[47]
J. Benesty, J. Chen, and Y. Huang. 2008. Microphone Array Signal Processing. Springer.
[48]
D. J. Mennill, M. Battiston, D. R. Wilson, J. R. Foote, and S. M. Doucet. Field Test of An Affordable, Portable, Wireless Microphone Array for Spatial Monitoring of Animal Ecology and Behaviour. Methods in Ecology and Evolution, 3(4): 704--712, 2012.
[49]
D. S. Shiu and J. M. Kahn. Differential Pulse-Position Modulation for Power-Efficient Optical Communication. IEEE Trans. Communications, 47(8): 1201--1210, 1999.
[50]
K. T. Wong. Narrowband PPM Semi-'Blind' Spatial-Rake Receiver & Co-channel Interference Suppression. European Trans. Telecommunications, 18(2): 193--197, 2007.
[51]
https://physicsworld.com/a/wearable-acoustic-system-monitors-foetal-motion/
[52]
https://sonicscoop.com/2018/02/05/audio-mixing-for-vr-the-beginners-guide-to-spatial-audio-3d-sound-and-ambisonics/
[53]
www.acoustic-camera.com/fileadmin/acoustic-camera/support/downloads/AC_brochure_2017_EN.pdf
[54]
https://www.minidsp.com/applications/usb-mic-array
[55]
www.acoustic-camera.com/en/products/microphone-arrays.html
[56]
https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1284-2-201901-I!!PDF-E.pdf
[57]
https://facebookincubator.github.io/facebook-360-spatial-workstation/
[58]
https://superpowered.com/superpowered-audio-sdk-for-ios-android-windows-macos-linux-tvos
[59]
https://www.adobe.io/apis/creativecloud/audition.html
[60]
https://www.gearpatrol.com/tech/a36932143/apple-spatial-audio-vs-dolby-atmos-whats-the-difference/
[61]
https://www.apple.com/ca/newsroom/2021/05/apple-music-announces-spatial-audio-and-lossless-audio/
[62]
https://www.xilinx.com/products/design-tools/xst.html
[63]
http://wisp5.wispsensor.net
[64]
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-design.html
[65]
https://www.tsmc.com/english/dedicatedFoundry/technology/logic.htm#l_65nm_technology

Cited By

View all
  • (2024)Bitalign: Bit Alignment for Bluetooth Backscatter CommunicationIEEE Transactions on Mobile Computing10.1109/TMC.2024.337481523:10(10191-10201)Online publication date: Oct-2024
  • (2024)Cross-Technology Backscatter for Smart Health MonitoringPractical Backscatter Communication for the Internet of Things10.1007/978-3-031-59254-6_4(59-75)Online publication date: 21-Apr-2024
  • (2024)Spectrum-Efficient Backscatter for Smart HomesPractical Backscatter Communication for the Internet of Things10.1007/978-3-031-59254-6_3(37-58)Online publication date: 21-Apr-2024
  • Show More Cited By

Index Terms

  1. Microphone array backscatter: an application-driven design for lightweight spatial sound recording over the air

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        MobiCom '21: Proceedings of the 27th Annual International Conference on Mobile Computing and Networking
        October 2021
        887 pages
        ISBN:9781450383424
        DOI:10.1145/3447993
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Sponsors

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 25 October 2021

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. backscatter
        2. internet of things
        3. microphone array
        4. spatial sound

        Qualifiers

        • Research-article

        Funding Sources

        • Canada NSERC Discovery
        • Canada Technology Demonstration Program (TDP)

        Conference

        ACM MobiCom '21
        Sponsor:

        Acceptance Rates

        Overall Acceptance Rate 440 of 2,972 submissions, 15%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)105
        • Downloads (Last 6 weeks)17
        Reflects downloads up to 01 Mar 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)Bitalign: Bit Alignment for Bluetooth Backscatter CommunicationIEEE Transactions on Mobile Computing10.1109/TMC.2024.337481523:10(10191-10201)Online publication date: Oct-2024
        • (2024)Cross-Technology Backscatter for Smart Health MonitoringPractical Backscatter Communication for the Internet of Things10.1007/978-3-031-59254-6_4(59-75)Online publication date: 21-Apr-2024
        • (2024)Spectrum-Efficient Backscatter for Smart HomesPractical Backscatter Communication for the Internet of Things10.1007/978-3-031-59254-6_3(37-58)Online publication date: 21-Apr-2024
        • (2024)IntroductionPractical Backscatter Communication for the Internet of Things10.1007/978-3-031-59254-6_1(1-14)Online publication date: 21-Apr-2024
        • (2023)Efficient Single-Symbol Backscatter With Uncontrolled Ambient OFDM WiFiIEEE/ACM Transactions on Networking10.1109/TNET.2023.333222032:2(1797-1806)Online publication date: 15-Nov-2023
        • (2023)Bidirectional Bluetooth Backscatter With EdgesIEEE Transactions on Mobile Computing10.1109/TMC.2023.324120223:2(1601-1612)Online publication date: 31-Jan-2023
        • (2023)Microphone Array BackscatterPervasive Ambient Communication for Internet of Things10.1007/978-3-031-38044-0_10(215-243)Online publication date: 26-Jun-2023
        • (2022)EAScatter: Excitor-Aware Bluetooth Backscatter2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)10.1109/IWQoS54832.2022.9812894(1-10)Online publication date: 10-Jun-2022
        • (2022)Enabling ZigBee Backscatter Communication in a Crowded Spectrum2022 IEEE 30th International Conference on Network Protocols (ICNP)10.1109/ICNP55882.2022.9940384(1-11)Online publication date: 30-Oct-2022

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media