skip to main content
10.1145/3448748.3448770acmotherconferencesArticle/Chapter ViewAbstractPublication PagesbicConference Proceedingsconference-collections
research-article

The Inhibition of ZN Finger Transcription Factors

Published:21 March 2021Publication History

ABSTRACT

Zinc fingers are among the most abundant protein motifs and play a pivotal role in cell proliferation, migration, and differentiation. Emerging studies have focused on the zinc finger transcription factors role in related diseases and discovered they are involved in activating oncogenic transcription, HIV reverse transcription, and bacterium infection. Hence, it is important to investigate and understand how zinc finger transcription factors can be selectively inhibited. The aim of this minireview is to describe how Zn Finger inhibition occurs within both a chemical and biological framework. Complexes Synthesis, inhibition mechanism, and selectivity are comprehensively reviewed. Cells utilize phosphorylation and acetylation to self-inhibit the zinc finger transcription factors by adjusting spatial structure and chemical properties. Also, we propose potential regulation sites of post transcription modification, therapeutic treatments and concerns over animal trials.

References

  1. A. Shalmani et al., Genome Identification of B-BOX Gene Family Members in Seven Rosaceae Species and Their Expression Analysis in Response to Flower Induction in Malus domestica. Molecules 23, 1763 (2018).Google ScholarGoogle ScholarCross RefCross Ref
  2. M. Cassandri et al., Zinc-finger proteins in health and disease. Cell Death Discovery 3, 17071 (2017).Google ScholarGoogle ScholarCross RefCross Ref
  3. K. Kluska, J. Adamczyk, A. Krężel, Metal binding properties, stability and reactivity of zinc fingers. Coordination Chemistry Reviews 367, 18--64 (2018).Google ScholarGoogle ScholarCross RefCross Ref
  4. R. E. Dempski, in Current Topics in Membranes, J. M. Argüello, S. Lutsenko, Eds. (Academic Press, 2012), vol. 69, pp. 221--245.Google ScholarGoogle Scholar
  5. C. Andreini, L. Banci, I. Bertini, A. Rosato, Counting the zinc-proteins encoded in the human genome. Journal of Proteome Research 5, 196--201 (2006).Google ScholarGoogle ScholarCross RefCross Ref
  6. P. A. Krieg, A. S. Warkman, in Principles of Developmental Genetics (Second Edition), S. A. Moody, Ed. (Academic Press, Oxford, 2015), pp. 407--420.Google ScholarGoogle Scholar
  7. M. Ghaedi, F. Takei, in Encyclopedia of Immunobiology, M. J. H. Ratcliffe, Ed. (Academic Press, Oxford, 2016), pp. 149--155.Google ScholarGoogle Scholar
  8. J. M. Berg, Proposed structure for the zinc-binding domains from transcription factor IIIA and related proteins. Proceedings of the National Academy of Sciences of the United States of America 85, 99--102 (1988).Google ScholarGoogle ScholarCross RefCross Ref
  9. J. Miller, A. D. McLachlan, A. Klug, Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. The EMBO journal 4, 1609--1614 (1985).Google ScholarGoogle Scholar
  10. T. Nagata, A. Hosaka-Sasaki, S. Kikuchi, in Plant Transcription Factors, D. H. Gonzalez, Ed. (Academic Press, Boston, 2016), pp. 73--97.Google ScholarGoogle ScholarCross RefCross Ref
  11. R. S. Brown, C. Sander, P. Argos, The primary structure of transcription factor TFIIIA has 12 consecutive repeats. FEBS Letters 186, 271--274 (1985).Google ScholarGoogle ScholarCross RefCross Ref
  12. M. S. Sands, D. F. Bogenhagen, TFIIIA binds to different domains of 5S RNA and the Xenopus borealis 5S RNA gene. Molecular and cellular biology 7, 3985--3993 (1987).Google ScholarGoogle Scholar
  13. A. R. Reddi, B. R. Gibney, Role of protons in the thermodynamic contribution of a Zn(II)-Cys 4 site toward metalloprotein stability. Biochemistry 46, 3745--3758 (2007).Google ScholarGoogle ScholarCross RefCross Ref
  14. A. M. Rich et al., Thermodynamics of Zn 2+ binding to Cys 2His 2 and Cys 2HisCys zinc fingers and a Cys 4 transcription factor site. Journal of the American Chemical Society 134, 10405--10418 (2012).Google ScholarGoogle ScholarCross RefCross Ref
  15. J. N. Smith, J. T. Hoffman, Z. Shirin, C. J. Carrano, H-bonding interactions and control of thiolate nucleophilicity and specificity in model complexes of zinc metalloproteins. Inorganic Chemistry 44, 2012--2017 (2005).Google ScholarGoogle ScholarCross RefCross Ref
  16. A. T. Maynard, D. G. Covell, Reactivity of zinc finger cores: Analysis of protein packing and electrostatic screening. Journal of the American Chemical Society 123, 1047--1058 (2001).Google ScholarGoogle ScholarCross RefCross Ref
  17. G. Bulaj, T. Kortemme, D. P. Goldenberg, Ionization-reactivity relationships for cysteine thiols in polypeptides. Biochemistry 37, 8965--8972 (1998).Google ScholarGoogle ScholarCross RefCross Ref
  18. W. M. Gommans, H. J. Haisma, M. G. Rots, Engineering Zinc Finger Protein Transcription Factors: The Therapeutic Relevance of Switching Endogenous Gene Expression On or Off at Command. Journal of Molecular Biology 354, 507--519 (2005).Google ScholarGoogle ScholarCross RefCross Ref
  19. V. Senée et al., Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nature genetics 38, 682--687 (2006).Google ScholarGoogle Scholar
  20. R. Y. Birnbaum et al., Association analysis identifies ZNF750 regulatory variants in psoriasis. BMC medical genetics 12, 167 (2011).Google ScholarGoogle Scholar
  21. M. Pieraccioli et al., ZNF281 contributes to the DNA damage response by controlling the expression of XRCC2 and XRCC4. Oncogene 35, 2592--2601 (2016).Google ScholarGoogle ScholarCross RefCross Ref
  22. D. A. Sartori, B. Miller, U. Bierbach, N. Farrell, Modulation of the chemical and biological properties of trans platinum complexes: Monofunctional platinum complexes containing one nucleobase as potential antiviral chemotypes. Journal of Biological Inorganic Chemistry 5, 575--583 (2000).Google ScholarGoogle ScholarCross RefCross Ref
  23. R. T. Doku, G. Park, K. E. Wheeler, K. E. Splan, Spectroscopic characterization of copper(I) binding to apo and metal-reconstituted zinc finger peptides. Journal of Biological Inorganic Chemistry 18, 669--678 (2013).Google ScholarGoogle ScholarCross RefCross Ref
  24. P. F. Predki, B. Sarkar, Effect of replacement of 'zinc finger' zinc on estrogen receptor DNA interactions. Journal of Biological Chemistry 267, 5842--5846 (1992).Google ScholarGoogle ScholarCross RefCross Ref
  25. K. P. Neupane, V. L. Pecoraro, Pb-207 NMR spectroscopy reveals that Pb(II) coordinates with glutathione (GSH) and tris cysteine zinc finger proteins in a PbS3 coordination environment. Journal of Inorganic Biochemistry 105, 1030--1034 (2011).Google ScholarGoogle ScholarCross RefCross Ref
  26. A. A. Karaczyn et al., The Octapeptidic End of the C-Terminal Tail of Histone H2A Is Cleaved off in Cells Exposed to Carcinogenic Nickel(II). Chemical Research in Toxicology 16, 1555--1559 (2003).Google ScholarGoogle ScholarCross RefCross Ref
  27. R. J. Fisher et al., Complex interactions of HIV-1 nucleocapsid protein with oligonucleotides. Nucleic Acids Res 34, 472--484 (2006).Google ScholarGoogle ScholarCross RefCross Ref
  28. R. A. Musah, The HIV-1 nucleocapsid zinc finger protein as a target of antiretroviral therapy. Current topics in medicinal chemistry 4, 1605--1622 (2004).Google ScholarGoogle Scholar
  29. S. Dovat et al., A common mechanism for mitotic inactivation of C2H2 zinc finger DNA-binding domains. Genes Dev 16, 2985--2990 (2002).Google ScholarGoogle ScholarCross RefCross Ref
  30. R. Rizkallah, K. E. Alexander, M. M. Hurt, Global mitotic phosphorylation of C2H2 zinc finger protein linker peptides. Cell Cycle 10, 3327--3336 (2011).Google ScholarGoogle ScholarCross RefCross Ref
  31. D. Jantz, J. M. Berg, Reduction in DNA-binding affinity of Cys2His2 zinc finger proteins by linker phosphorylation. Proceedings of the National Academy of Sciences 101, 7589--7593 (2004).Google ScholarGoogle ScholarCross RefCross Ref
  32. M. A. Glozak, N. Sengupta, X. Zhang, E. Seto, Acetylation and deacetylation of non-histone proteins. gene 363, 15--23 (2005).Google ScholarGoogle Scholar
  33. Y.-L. Yao, W.-M. Yang, E. Seto, Regulation of transcription factor YY1 by acetylation and deacetylation. Molecular and cellular biology 21, 5979--5991 (2001).Google ScholarGoogle Scholar
  34. A. Louie, T. Meade, A cobalt complex that selectively disrupts the structure and function of zinc fingers. Proceedings of the National Academy of Sciences 95, 6663--6668 (1998).Google ScholarGoogle ScholarCross RefCross Ref
  35. T. L. South, K. Bo, D. R. Hare, M. F. Summers, Zinc fingers and molecular recognition. Structure and nucleic acid binding studies of an HIV zinc fingerlike domain. Biochemical pharmacology 40, 123--129 (1990).Google ScholarGoogle Scholar
  36. M. C. Heffern, J. W. Kurutz, T. J. Meade, Spectroscopic elucidation of the inhibitory mechanism of Cys2His2 zinc finger transcription factors by cobalt (III) Schiff base complexes. Chemistry-A European Journal 19, 17043--17053 (2013).Google ScholarGoogle ScholarCross RefCross Ref
  37. A. S. Harney et al., Targeted inhibition of Snail family zinc finger transcription factors by oligonucleotide-Co (III) Schiff base conjugate. Proceedings of the National Academy of Sciences 106, 13667--13672 (2009).Google ScholarGoogle ScholarCross RefCross Ref
  38. R. R. Hurtado et al., Specific inhibition of the transcription factor Ci by a cobalt (III) Schiff base-DNA conjugate. Molecular pharmaceutics 9, 325--333 (2012).Google ScholarGoogle Scholar
  39. M. C. Posewitz, D. E. Wilcox, Properties of the Sp1 zinc finger 3 peptide: coordination chemistry, redox reactions, and metal binding competition with metallothionein. Chemical research in toxicology 8, 1020--1028 (1995).Google ScholarGoogle Scholar
  40. J. L. Larabee, J. R. Hocker, J. S. Hanas, Mechanisms of inhibition of zinc-finger transcription factors by selenium compounds ebselen and selenite. Journal of inorganic biochemistry 103, 419--426 (2009).Google ScholarGoogle Scholar
  41. Y. Chen, W. Maret, Catalytic oxidation of zinc/sulfur coordination sites in proteins by selenium compounds. Antioxidants and Redox Signaling 3, 651--656 (2001).Google ScholarGoogle ScholarCross RefCross Ref
  42. R. Singh, G. M. Whitesides, Selenols catalyze the interchange reactions of dithiols and disulfides in water. The Journal of Organic Chemistry 56, 6931--6933 (1991).Google ScholarGoogle ScholarCross RefCross Ref
  43. J. E. Spallholz, On the nature of selenium toxicity and carcinostatic activity. Free Radical Biology and Medicine 17, 45--64 (1994).Google ScholarGoogle ScholarCross RefCross Ref
  44. M.-L. Hu, J. E. Spallholz, In vitro hemolysis of rat erythrocytes by selenium compounds. Biochemical Pharmacology 32, 957--961 (1983).Google ScholarGoogle ScholarCross RefCross Ref
  45. A. Watrach, J. Milner, M. Watrach, Effect of selenium on growth rate of canine mammary carcinoma cells in athymic nude mice. Cancer letters 15, 137--143 (1982).Google ScholarGoogle Scholar

Index Terms

  1. The Inhibition of ZN Finger Transcription Factors

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      BIC 2021: Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing
      January 2021
      445 pages
      ISBN:9781450390002
      DOI:10.1145/3448748

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 March 2021

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited
    • Article Metrics

      • Downloads (Last 12 months)7
      • Downloads (Last 6 weeks)0

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader