skip to main content
10.1145/3448748.3448810acmotherconferencesArticle/Chapter ViewAbstractPublication PagesbicConference Proceedingsconference-collections
research-article

Application of Artificial Intelligence in Medical Imaging Diagnosis

Authors Info & Claims
Published:21 March 2021Publication History

ABSTRACT

The development of artificial intelligence promotes the great progress of medical imaging diagnosis. Based on this, this paper reviews and discusses the medical image diagnosis based on artificial intelligence in recent years, introduces the procedure of medical image diagnosis, the algorithms involved and the key progress, analyzes the shortcomings of the current technology, and the possible development direction in the future.

References

  1. Kotkar V A, Gharde S S. Review of various image contrast enhancement techniques. Int J Innovat Res Sci, Eng Technol, 2013, 2: 2786--2793.Google ScholarGoogle Scholar
  2. Bedi S S, Khandelwal R. Various image enhancement techniques---A critical review. Int J Adv Res Comput Commun Eng, 2013, 2: 1605--1609.Google ScholarGoogle Scholar
  3. Chaudhary C, Patil M K. Review of image enhancement techniques using histogram equalization. Int J Appl Innov Eng Manag, 2013, 2: 343--349.Google ScholarGoogle Scholar
  4. Papadopoulos A, Fotiadis D I, Costaridou L. Improvement of microcalcification cluster detection in mammography utilizing image enhancement techniques. Comput Biol Med, 2008, 38: 1045--1055.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Warren R C, Pandya Y V. Effect of window width and viewing distance in CT display. Br J Radiol, 1982, 55: 72--74.Google ScholarGoogle ScholarCross RefCross Ref
  6. Unser M, Aldroubi A. A review of wavelets in biomedical applications. Proc IEEE, 1996, 84: 626--638.Google ScholarGoogle ScholarCross RefCross Ref
  7. Contreras Ortiz S H, Chiu T, Fox M D. Ultrasound image enhancement: A review. Biomed Signal Proc Control, 2012, 7: 419--428.Google ScholarGoogle ScholarCross RefCross Ref
  8. Sezn M I, Teklap A M, Schaetzing R. Automatic anatomically selective image enhancement in digital chest radiography. IEEE Trans Med Imag, 1989, 8: 154--162.Google ScholarGoogle ScholarCross RefCross Ref
  9. Gowri D S, Amudha T. A review on mammogram image enhancement techniques for breast cancer detection. In: 2014 International Conference on Intelligent Computing Applications. Coimbatore. 2014. New York: IEEE, 2014. 47--51.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hsu W Y, Chou C Y. Medical image enhancement using modified color histogram equalization. J Med Biol Eng, 2015, 35: 580--584.Google ScholarGoogle ScholarCross RefCross Ref
  11. Ng H P, Ong S H, Foong K W C, et al. Medical image segmentation using k-means clustering and improved watershed algorithm. In: 2006 IEEE Southwest Symposium on Image Analysis and Interpretation. Denver. 2006. New York: IEEE, 2006: 61--65.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Zhang D Q, Chen S C. A novel kernelized fuzzy C-means algorithm with application in medical image segmentation. Artif Intell Med, 2004, 32: 37--50.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Pham M, Susomboon R, Disney T, et al. A comparison of texture models for automatic liver segmentation. In: Medical Imaging 2007: Image Processing. Lansdale: International Society for Optics and Photonics, 2007. 6512: 65124E.Google ScholarGoogle Scholar
  14. Dehmeshki J, Amin H, Valdivieso M, et al. Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach. IEEE Trans Med Imag, 2008, 27: 467--480.Google ScholarGoogle ScholarCross RefCross Ref
  15. Zhu B L. Improving gauss-laplacian operator based on CT image of the brain (in Chinese). J Chongqing Three Gorges Univ, 2011, 27: 78--80.Google ScholarGoogle Scholar
  16. Ciresan DC, Giusti A, Gambardella LM, et al.Deep neural networks segment R@neuronal membranes in electron microscopyimages[ J] Advances in Neural Information Processing Systems, 2012, 25: 2852--- 2860.Google ScholarGoogle Scholar
  17. Ronneberger O, U-net: convolutional networks for biomedical image segmentation[C], 2015, 9351: 234--- 241.Google ScholarGoogle Scholar
  18. Nguyen V D, Nguyen D T, Nguyen T D, et al. An automated method to segment and classify masses in mammograms. World Acad Sci, Eng Technol, 2009, 3: 761--766.Google ScholarGoogle Scholar
  19. Braz Junior G, da Rocha S V, Gattass M, et al. A mass classification using spatial diversity approaches in mammography images for false positive reduction. Expert Syst Appl, 2013, 40: 7534--7543.Google ScholarGoogle ScholarCross RefCross Ref
  20. Doyle S, Hwang M, Shah K, et al. Automated grading of prostate cancer using architectural and textural image features. In: 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Arlington. 2007. New York: IEEE, 2007. 1284--1287.Google ScholarGoogle ScholarCross RefCross Ref
  21. Gopinath B, Shanthi N. Computer-aided diagnosis system for classifying benign and malignant thyroid nodules in multi-stained FNAB cytological images. Australas Phys Eng Sci Med, 2013, 36: 219--230.Google ScholarGoogle ScholarCross RefCross Ref
  22. Buciu I, Gacsadi A. Directional features for automatic tumor classification of mammogram images. Biomed Signal Proc Control, 2011, 6: 370--378.Google ScholarGoogle ScholarCross RefCross Ref
  23. Wang Y, Li J, Gao X. Latent feature mining of spatial and marginal characteristics for mammographic mass classification. Neurocomputing, 2014, 144: 107--118.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. W. Zhu, C. Liu, W. Fan and X. Xie, "DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification," 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, 2018, pp. 673--681, doi: 10.1109/WACV.2018.00079.Google ScholarGoogle ScholarCross RefCross Ref
  25. Kooi T, Litjens G, van Ginneken B, et al. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal, 2017, 35: 303--312.Google ScholarGoogle ScholarCross RefCross Ref
  26. Shi J, Zhou S, Liu X, et al. Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing, 2016, 194: 87--94.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Calle-Alonso F, Pérez C J, Arias-Nicolás J P, et al. Computer-aided diagnosis system: A Bayesian hybrid classification method. Comput Methods Progr Biomed, 2013, 112: 104--113.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kahn Jr C E, Roberts L M, Shaffer K A, et al. Construction of a Bayesian network for mammographic diagnosis of breast cancer. Comput Biol Med, 1997, 27: 19--29.Google ScholarGoogle ScholarCross RefCross Ref
  29. Rose C, Turi D, Williams A, et al. Web services for the DDSM and digital mammography research. In: International Workshop on Digital Mammography. Heidelberg: Springer, 2006. 376--383.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Gurcan M N, Sahiner B, Petrick N, et al. Lung nodule detection on thoracic computed tomography images: Preliminary evaluation of a computer-aided diagnosis system. Med Phys, 2002, 29: 2552--2558.Google ScholarGoogle ScholarCross RefCross Ref
  31. Kuo W J, Chang R F, Chen D R, et al. Data mining with decision trees for diagnosis of breast tumor in medical ultrasonic images. Breast Cancer Res Treat, 2001, 66: 51--57.Google ScholarGoogle ScholarCross RefCross Ref
  32. Saiti F, Naini A A, Shoorehdeli M A, et al. Thyroid disease diagnosis based on genetic algorithms using PNN and SVM. In: 2009 3rd International Conference on Bioinformatics and Biomedical Engineering. Beijing. 2009. New York: IEEE, 2009. 1--4.Google ScholarGoogle ScholarCross RefCross Ref
  33. Shetty S, Rao Y S. SVM based machine learning approach to identify Parkinson's disease using gait analysis. In: 2016 International Conference on Inventive Computation Technologies (ICICT). Coimbatore. 2016. New York: IEEE, 2017. 1--5.Google ScholarGoogle Scholar
  34. de Oliveira F S S, de Carvalho Filho A O, Silva A C, et al. Classification of breast regions as mass and non-mass based on digital mammograms using taxonomic indexes and SVM. Comput Biol Med, 2015, 57: 42--53.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Campadelli P, Casiraghi E, Valentini G. Support vector machines for candidate nodules classification. Neurocomputing, 2005, 68: 281--288.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Zhu Y, Tan Y, Hua Y, et al. Feature selection and performance evaluation of support vector machine (SVM)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomography. J Digit Imag, 2010, 23: 51--65.Google ScholarGoogle ScholarCross RefCross Ref
  37. Ince T, Kiranyaz S, Pulkkinen J, et al. Evaluation of global and local training techniques over feed-forward neural network architecture spaces for computer-aided medical diagnosis. Expert Syst Appl, 2010, 37: 8450--846.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Bellotti R, De Carlo F, Tangaro S, et al. A completely automated CAD system for mass detection in a large mammographic database. Med Phys, 2006, 33: 3066--3075.Google ScholarGoogle ScholarCross RefCross Ref
  39. Tramèr F, Zhang F, Juels A, et al. Stealing machine learning models via prediction apis. In: 25th USENIX Security Symposium. Berkeley: USENIX Association, 2016. 601--618.Google ScholarGoogle Scholar

Index Terms

  1. Application of Artificial Intelligence in Medical Imaging Diagnosis

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      BIC 2021: Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing
      January 2021
      445 pages
      ISBN:9781450390002
      DOI:10.1145/3448748

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 March 2021

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited
    • Article Metrics

      • Downloads (Last 12 months)116
      • Downloads (Last 6 weeks)18

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader