skip to main content
10.1145/3449301.3449328acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicraiConference Proceedingsconference-collections
research-article

Study Case: Data Acquisition System to Evaluate the Water Generation of an Evaporator

Published: 09 June 2021 Publication History

Abstract

The proposed prototype is an automated system to obtain water from the Carnot cycle, using microcontrollers for regulation and data collection of the temperature, pressure, and relative humidity. Water generation is a necessity in some countries, and many people do not have access to water to meet their daily needs. The methodology consisted in the development of a data acquisition system consisting of electronic circuits and processing systems. This system is composed of a microcontroller and a machine vision system that detects the optimal point of water production. The results show the production of 79 ml of water in cycle 1, and 69 ml of water in cycle 2 with an RGB reaches more than 140 in the grayscale. Therefore, the authors conclude that by the time the sum of RGB values greater than 140 reaches 1247, the refrigeration system has already generated the maximum amount of ice.

References

[1]
PNUD, 2006, Informe sobre Desarrollo Humano 2006: Más allá de la escasez: Poder, pobreza y crisis mundial del agua, Programa de las Naciones Unidas para el Desarrollo.
[2]
M. M. Mekonnen y A. Hoekstra, 2016, Four billion people facing sever water scarcity, Sci. Adv., vol. 2, n.o 2, pp. 1-3, Feb.
[3]
M. W. Rosegrant, X. Cai, y S. A. Cline, 2002, Panorama Global del Agua Hasta el Año 2025: Como impedir una crisis iminente, International Food Policy Research Institute (IFPRI), International Water Management Institute (IWMI), Sep.
[4]
R. Chávez y M. Costas, 2015, PSICROMETRÍA. Principios y protocolos experimentales diversos, 1ra ed. México: UNAM, Facultad de Química.
[5]
R. Rogers, 2003, Física de las Nubes. Barcelona: Editorial Reverte.
[6]
D. L. Fenton, 2016, Fundamentals of Refrigeration, 2nd Ed. Atlanta, GA: ASHRAE Learning Institute.
[7]
J. U. Ahamed, R. Saidur, y H. H. Masjuki, 2011, A Review on Exergy Analysis of Vapor Compression Refrigeration System, Renew. Sustain. Energy Rev., vol. 15, n.o 3, pp. 1593-1600, abr.
[8]
S. A. Klein, D. T. Reindl, y K. Brownell, 2000, Refrigeration System Performance Using Liquid-Suction Heat Exchangers, Int. J. Refrig., vol. 23, n.o 8, pp. 588-596.
[9]
C. Thybo, R. Izadi-Zamanabadi, y H. Niemann, 2002, Toward High Performance in Industrial Refrigeration Systems, Proc. Int. Conf. Control Appl., vol. 2, pp. 915-920.
[10]
J. L. Guzmán, R. Costa Castelló, M. Berenguel, y S. Dormido, 2012, Control AutomÁTico Con Herramientas Interactivas. México: PEARSON EDUACIÓN, S. A.
[11]
S. Dormido, 2004, Control Learning: Present and Future, Annu. Rev. Control, vol. 28, n.o 1, pp. 116-136.
[12]
M. Kusriyanto, H. Utama y R. Rais, 2019, Prototype of Microhydro Generator with Complement Load and Telemonitoring Using Labview Software with ESP8266 Module Interface, International Conference on Electronics Representation and Algorithm (ICERA 2019), p. 1201.
[13]
Y. Chen y Z. Liu, 2019, Performance Research on Mechanical Draft Wet Cooling Tower under Variable Operating Conditions, International Journal of Electrical and Electronic Engineering & Telecommunications, vol. 8, nº 4, pp. 226-232.
[14]
N. Ishiwata, T. Niwa, y H. Abe, 2019, Accurate and Precise Dew-Point Control System Based on Active Pressure Control in Two-Pressure Humidity Generator, Rev. Sci. Instrum., vol. 90, n.o 7, p. 076104, Jul.
[15]
H. Rostamzadeh, J. Rostamzadeh, P. S. Matin, y H. Ghaebi, 2018, Novel Dual-loop Bi-evaporator Vapor Compression Refrigeration Cycles for Freezing and Air-conditioning Applications, Appl. Therm. Eng., vol. 138, pp. 563-582, Jun.
[16]
D. Wang, T. Tao, S. Kang, y G. Xu, 2010, Non-contact Frost Thickness Measurement by Using a Micro-camera and Image Processing Technology, en 2010 IEEE International Conference on Mechatronics and Automation, Xi'an, China, pp. 288-293.
[17]
M. Y. Pande y A. Patil, 2014, Computational Fluid Dynamics on Different Passages Over a Plate Coil Evaporator for 40 Liter Storage Type Water Cooler., International Journal of Mechanical Engineering and Robotics Research, vol. 3, nº 4, pp. 16-23.
[18]
Y. S. Park, H. S. Seong, y J. S. Suh, 2020, Numerical Analysis of Freezing Phenomena of Water around the Channel Tube of MF Evaporator, J. Koren Soc. Manufacturing Process Eng., vol. 19, n.o 1, pp. 114-120.
[19]
Z. Ahmad, A. Bahadori, y J. Zhang, 2018, Prediction of Equilibrium Water Dew Point of Natural Gas in TEG Dehydration Systems using Bayesian Feedforward Artificial Neural Network (FANN), Pet. Sci. Technol., vol. 36, n.o 20, pp. 1620-1626, Jun.

Cited By

View all
  • (2022)Water Generation Based on Condensation Controlled by Gray Scale and Artificial Vision2022 International Conference on Information, Control, and Communication Technologies (ICCT)10.1109/ICCT56057.2022.9976774(1-5)Online publication date: 3-Oct-2022

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICRAI '20: Proceedings of the 6th International Conference on Robotics and Artificial Intelligence
November 2020
288 pages
ISBN:9781450388597
DOI:10.1145/3449301
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 June 2021

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Carnot cycle
  2. Machine vision system
  3. Microcontroller
  4. Water generation

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

ICRAI 2020

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)0
Reflects downloads up to 21 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Water Generation Based on Condensation Controlled by Gray Scale and Artificial Vision2022 International Conference on Information, Control, and Communication Technologies (ICCT)10.1109/ICCT56057.2022.9976774(1-5)Online publication date: 3-Oct-2022

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media