skip to main content
10.1145/3449365.3449378acmotherconferencesArticle/Chapter ViewAbstractPublication PagesapitConference Proceedingsconference-collections
research-article

Image Saliency Detection via Multi-Feature and Manifold-Space Ranking

Published: 17 May 2021 Publication History

Abstract

In this paper, we propose an image saliency detection method by using multi-feature and manifold-space ranking. Basically, the proposed method extracts the color-histogram feature to obtain the fine information of the image, and the color-mean feature to obtain the coarse information respectively. To further improve the detection accuracy of the feature correlation between different image units, a manifold-space ranking method is used to calculate saliency values of image units to construct a saliency map on each feature-space. Specifically, we fuse the two saliency maps to obtain the final saliency map. Extensive experiments demonstrate that the proposed method not only outperforms the other methods, but also improves the accuracy and robustness of the saliency detection.

References

[1]
L. Wang, J. Xue, N. Zheng, and G. Hua, “Automatic salient object extraction with contextual cue,” in Proc. IEEE Conf. Comput. Vis. (ICCV), Barcelona, Spain, Nov.2011, pp.105–112.
[2]
V. Lempitsky P. kohli, C. Rother, and T. Sharp, “Image segmentation with a bounding box prior,” in Proc. IEEE Conf. Comput. Vis. (ICCV), Kyoto, Japan, Sep.2009, pp.277-284.
[3]
P. Xu, “Cross-modal subspace learning for fine-grained sketch-based image retrieval,” Neurocomputing, vol. 278, pp.75–86, Feb. 2018.
[4]
S. Han, N. Vasconcelos. “Biologically plausible salicency mechanisms improve feedforward object recognition,” Vision research, vol.50, no.22,pp. 2295-2307, Oct.2010.
[5]
K. Ishikura, N. Kurita, D. M. Chandler, and G. Ohashi, “Saliency detection based on multiscale extrema of local perceptual color differences,” IEEE Trans. Image Process., vol.27, no.2, pp.703–717, Feb.2018.
[6]
C. Guo and L. Zhang, “A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression,” IEEE Trans, Image Process., vol.19, no.1, pp.185–198, Jan.2018.
[7]
W. Zhu, S. Liang, Y. Wei, and J. Sun, “Saliency optimization from robust background detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.(CVPR), Columbus, Ohio, Jun.2014, pp.2814–2821.
[8]
J. Sun, H. Lu, and X. Liu, “Saliency region detection based on markov absorption probabilities,” IEEE Trans, Image Process., vol.24, no.5, pp.1639–1649, May.2015.
[9]
R. Achanta, F. Estrada, P. Wils, and S. Süsstrunk, “Salient region detection and segmentation,” in Proc. IEEE Conf. Comput. Vis. Syst. (ICVS), Santorini, Greece, May. 2008, pp.66-75.
[10]
S .Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.(CVPR), San Francisco, CA, USA, Jun.2010, pp.1915-1926.
[11]
M. Cheng, N. Mitra, X. Huang, P. Torr, and S.Hu, “Global contrast based salient region detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol.37, no.3, pp.569-582, Mar.2015
[12]
M. Xu, L. Jiang, and Z. Ye. “Bottom-up saliency detection with sparse representation of learnt texture atoms,” Pattern Recognit., vol.60, pp.348-360, Dec.2016.
[13]
H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li, “Salient object detection: A discriminative regional feature integration approach,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Portland, OR, USA, Jun.2013, pp.2083–2090.
[14]
J. Yang and M. Yang, “Top-down visual saliency via joint CRF and dictionary learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol.39, no.3, pp.576–588, Mar.2017.
[15]
X. Zhang, T. Wang, J. Qi, H. Lu, and G. Wang, “Progressive attention guided recurrent network for salient object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Salt Lake, UH, USA, Jun. 2018, pp.714–722.
[16]
Y. Qin, M. Feng, H. Lu, and G.Cottrell, “Hierarchical cellular automata for visual saliency,” Int. J. Comput. Vis., vol.126, no.7, pp.751–770, Feb.2018.
[17]
M. Zeiler, D. Krishnan, G. Taylor, and R.Fergus, “Deconvolutional networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), San Francisco, CA, USA, Jun. 2010, pp. 2528–2535.
[18]
Y. Wei, F. Wen, W. Zhu, and J. Sun. “Geodesic saliency using background priors,” in Proc.12th European Conf. Comput. Vis.(ECCV), Florence, Italy, Oct.2012, pp.29-42.
[19]
C. Yang, L. Zhang, H. Lu, X. Ruan, and M. Yang, “Saliency Detection via Graph-Based Manifold Ranking,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Portland, USA, Jun.2013, pp. 3166-3173.
[20]
J. Wang, H. Lu, X. Li, “Saliency detection via background and foreground seed selection,” Neurocomputing, vol.152, pp.359-368, Mar.2015.
[21]
G. Xuan, P. Chai, M. Wu. “Bhattacharyya Distance Feature Selection,” in Proc. 13th Int Conf. Pattern Recognit (ICPR), Vuebba, Austria, Aug. 1996, pp. 25- 29.
[22]
D. Zhou, J. Weston, A. Gretton, O. Bousquet, and B. Scholkopf, “Ranking on data manifolds,” In Proc.16th Int Conf. Neural. Inform. Process. Syst. ( NIPS), Dec. 2003, pp.169-176.
[23]
X. Hou, and L. Zhang, “Saliency Detection: A Spectral Residual Approach,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.( CVPR), MN, USA, Jun.2007, pp.1-8.
[24]
R. Achanta, S. Hemami, F. Estrada, and S. Süsstrunk, “Frequency-tuned salient region detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Miami, FL, USA, Jun.2009, pp.1597-1604.
[25]
R. Achanta and S. Süsstrunk. “Saliency detection using maximum symmetric surround,” in Proc. IEEE Conf. Image Process. (ICIP), Hong Kong, China, Sep. 2010, pp.2653-2656.
[26]
L. Nevrez, W. Lin, and Y. Fang, “A saliency detection model using low-level features based on wavelet,” IEEE Trans. Multimedia., vol.15, no.1, pp. 96-105, Jan.2013.
[27]
J. Zhang, and S. Sclaroff, “Exploiting surroundedness for saliency detection: a boolean map approach,” IEEE Trans. Pattern Anal. Mach. Intell., vol.38, no.5, pp. 889-902, May.2016.
[28]
J. Harel, C. Koch, P. Perona, “Graph-based visual saliency,” In Proc. 19th Int Conf. Neural. Inform. Process. Syst.(NIPS), Vancouver, British Columbia, Canada, Jan.2006, pp.545-552.
[29]
C. Yang, L. Zhang, and H. Lu, “Graph-regularized Saliency Detection with Convex-hull-based Center Prior,” IEEE Signal Process. Lette., vol.20, no. 7, pp. 637-640, Jul.2013.
[30]
L. Duan, C. Wu, J. Miao, L. Qing, and Y.F, “Visual saliency detection by spatially weighted dissimilarity” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Providence, RI, USA, Jun. 2011, pp. 473- 480.
[31]
Y. Yuan, C. Li, W. Cai, Y. Xia, and D. Feng. “Robust saliency detection via regularized random walks ranking,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Boston, MA, USA, Jun.2015, pp. 2710-2717.

Cited By

View all
  • (2023)Saliency Detection Based on Low-Level and High-Level Features via Manifold-Space RankingElectronics10.3390/electronics1202044912:2(449)Online publication date: 15-Jan-2023

Index Terms

  1. Image Saliency Detection via Multi-Feature and Manifold-Space Ranking
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      APIT '21: Proceedings of the 2021 3rd Asia Pacific Information Technology Conference
      January 2021
      140 pages
      ISBN:9781450388108
      DOI:10.1145/3449365
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 17 May 2021

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Saliency detection
      2. color-histogram
      3. manifold-space ranking
      4. multi-feature

      Qualifiers

      • Research-article
      • Research
      • Refereed limited

      Conference

      APIT 2021

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)4
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 08 Mar 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)Saliency Detection Based on Low-Level and High-Level Features via Manifold-Space RankingElectronics10.3390/electronics1202044912:2(449)Online publication date: 15-Jan-2023

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format.

      HTML Format

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media