skip to main content
research-article
Free Access

AI-CHD: an AI-based framework for cost-effective surgical telementoring of congenital heart disease

Published:19 November 2021Publication History
Skip Abstract Section

Abstract

3D heart modeling and AI bring new cardiac surgery to remote and less-developed regions.

References

  1. Bernier, P-L., Stefanescu, A., Samoukovic, G., and Tchervenkov, C.I. The challenge of congenital heart disease worldwide: Epidemiologic and demographic facts. In Seminars in Thoracic and Cardiovascular Surgery: Pediatric Cardiac Surgery Annual 13, Elsevier (2010), 26--34.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bogen, E.M., Augestad, K.M., Patel, H.R.H., and Lindsetmo, R-O. Telementoring in education of laparoscopic surgeons: An emerging technology. World Journal of Gastrointestinal Endoscopy 6, 5 (2014), 148.Google ScholarGoogle ScholarCross RefCross Ref
  3. Chen, Y-J., Chang, Y-J., Wen, S-C., Shi, Y., Xu, X., Ho, T-Y., Jia, Q., Huang, M., and Zhuang, J. Zero-shot medical image artifact reduction. In 2020 IEEE 17th Intern. Symp. on Biomedical Imaging (ISBI), 862--866.Google ScholarGoogle Scholar
  4. Chinese surgeons conduct remote surgery using 5G technology. The Times of India (June 11, 2019), https://timesofindia.indiatimes.com/world/china/chinese-surgeons-conduct-remote-surgery-using-5g-technology/articleshow/69742530.cms.Google ScholarGoogle Scholar
  5. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., and Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In Intern. Conf. on Medical Image Computing and Computer-Assisted Intervention. Springer (2016), 424--432.Google ScholarGoogle Scholar
  6. Cuthbertson, A. Surgeon performs world's first remote operation using 5G surgery on animal in China. Independent (Jan. 17, 2019), https://www.independent.co.uk/life-style/gadgets-and-tech/news/5g-surgery-china-robotic-operation-a8732861.html.Google ScholarGoogle Scholar
  7. First AI+5G surgery completed with Huawei's technological support. Global Times (2019), http://www.globaltimes.cn/content/1144600.shtml.Google ScholarGoogle Scholar
  8. Huang, E.Y., Knight, S., Guetter, C.R., Davis, C.H., Moller, M., Slama, E., and Crandall, M. Telemedicine and telementoring in the surgical specialties: A narrative review. The American Journal of Surgery 218, 4 (2019), 760--766.Google ScholarGoogle ScholarCross RefCross Ref
  9. Kang, E., Koo, H.J., Yang, D.H., Seo, J.B., and Ye, J.C. Cycle consistent adversarial denoising network for multiphase coronary CT angiography. (2018), arXiv preprint arXiv:1806.09748.Google ScholarGoogle Scholar
  10. Kempny, A., Dimopoulos, K., Uebing, A., Diller, G-P., Rosendahl, U., Belitsis, G., Gatzoulis, M.A., and Wort, S.J. Outcome of cardiac surgery in patients with congenital heart disease in England between 1997 and 2015. PLoS One 12, 6 (2017), e0178963.Google ScholarGoogle ScholarCross RefCross Ref
  11. Lacy, A.M., Bravo, R., Otero-Piñeiro, A.M., Pena, R., De Lacy, F.B., Menchaca, R., and Balibrea, J.M. 5G-assisted telementored surgery. British Journal of Surgery 106, 12 (2019), 1576--1579.Google ScholarGoogle ScholarCross RefCross Ref
  12. Lajevardi, S.M., Arakala, A., Davis, S.A., and Horadam, K.J. Retina verification system based on biometric graph matching. IEEE Transactions on Image Processing 22, 9 (2013), 3625--3635.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Marescaux, J. and Rubino, F. The ZEUS robotic system: Experimental and clinical applications. Surgical Clinics 83, 6 (2003), 1305--1315.Google ScholarGoogle Scholar
  14. Nifong, L.W., Chu, V.F., Bailey, B.M., Maziarz, D.M., Sorrell, V.L., Holbert, D., and Chitwood, Jr., W.R. Robotic mitral valve repair: Experience with the da Vinci system. The Annals of Thoracic Surgery 75, 2 (2003), 438--443.Google ScholarGoogle ScholarCross RefCross Ref
  15. Nita, R. World's first 5G-powered surgery: Dr. Antonio de Lacy. World Record Academy (2019), https://www.worldrecordacademy.org/medical/worlds-first-5g-powered-surgery-dr-antonio-de-lacy-219142.Google ScholarGoogle Scholar
  16. Ntiloudi, D., Giannakoulas, G., Parcharidou, D., Panagiotidis, T., Gatzoulis, M.A., and Karvounis, H. Adult congenital heart disease: A paradigm of epidemiological change. International J. of Cardiology 218 (2016), 269--274.Google ScholarGoogle ScholarCross RefCross Ref
  17. Pace, D.F., Dalca, A.V., Brosch, T., Geva, T., Powell, A.J., Weese, J., Moghari, M.H., and Golland, P. Iterative segmentation from limited training data: Applications to congenital heart disease. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer (2018), 334--342.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Payer, C., Štern, D., Bischof, H., and Urschler, M. Multi-label whole heart segmentation using CNNs and anatomical label configurations. In Intern. Workshop on Statistical Atlases and Computational Models of the Heart. Springer (2017), 190--198.Google ScholarGoogle Scholar
  19. Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Intern. Conf. on Medical Image Computing and Computer-Assisted Intervention, Springer (2015), 234--241.Google ScholarGoogle ScholarCross RefCross Ref
  20. Sagi, M.R., Aurobind, G., Chand, P., Ashfak, A., Karthick, C., Kubenthiran, N., Murthy, P., Komaromy, M., and Arora, S. Innovative telementoring for addiction management for remote primary care physicians: A feasibility study. Indian Journal of Psychiatry 60, 4 (2018), 461.Google ScholarGoogle ScholarCross RefCross Ref
  21. Van Der Linde, D., Konings, E.E.M., Slager, M.A., Witsenburg, M., Helbing, W.A., Takkenberg, J.J.M., and Roos-Hesselink, J.W. Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. Journal of the American College of Cardiology 58, 21 (2011), 2241--2247.Google ScholarGoogle ScholarCross RefCross Ref
  22. Wang, C., MacGillivray, T., Macnaught, G., Yang, G., and Newby, D. A two-stage 3D Unet framework for multi-class segmentation on full resolution image. (2018), arXiv preprint arXiv:1804.04341.Google ScholarGoogle Scholar
  23. Wolterink, J.M., Leiner, T., Viergever, M.A., and Išgum, I. Dilated convolutional neural networks for cardiovascular MR segmentation in congenital heart disease. In Reconstruction, Segmentation, and Analysis of Medical Images. Springer (2016), 95--102.Google ScholarGoogle Scholar
  24. Wolterink, J.M., Leiner, T., Viergever, M.A., and Išgum, I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Transactions on Medical Imaging 36, 12 (2017), 2536--2545.Google ScholarGoogle ScholarCross RefCross Ref
  25. Xu, X., Liu, Q., Yang, L., Hu, S., Chen, D., Hu, Y., and Shi, Y. Quantization of fully convolutional networks for accurate biomedical image segmentation. In Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (2018), 8300--8308.Google ScholarGoogle ScholarCross RefCross Ref
  26. Xu, X., Wang, T., Shi, Y., Yuan, H., Jia, Q., Huang, M., and Zhuang, J. Whole heart and great vessel segmentation in congenital heart disease using deep neural networks and graph matching. In Intern. Conf. on Medical Image Computing and Computer-Assisted Intervention, Springer (2019), 477--485.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Yamei. 5G remote surgery conducted in central China. Xinhua (2019), http://www.xinhuanet.com/english/2019-06/11/c_138134223.htm.Google ScholarGoogle Scholar
  28. Yang, Q., Yan, P., Zhang, Y., Yu, H., Shi, Y., Mou, X., Kalra, M.K., Zhang, Y., Sun, L., and Wang, G. Low dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Transactions on Medical Imaging (2018).Google ScholarGoogle ScholarCross RefCross Ref
  29. Yu, L., Yang, X., Qin, J., and Heng, P-A. 3D FractalNet: Dense volumetric segmentation for cardiovascular MRI volumes. In Reconstruction, Segmentation, and Analysis of Medical Images. Springer (2016), 103--110.Google ScholarGoogle Scholar
  30. Zontak, M. and Irani, M. Internal statistics of a single natural image. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference, 977--984.Google ScholarGoogle Scholar

Index Terms

  1. AI-CHD: an AI-based framework for cost-effective surgical telementoring of congenital heart disease

                Recommendations

                Comments

                Login options

                Check if you have access through your login credentials or your institution to get full access on this article.

                Sign in

                Full Access

                • Published in

                  cover image Communications of the ACM
                  Communications of the ACM  Volume 64, Issue 12
                  December 2021
                  101 pages
                  ISSN:0001-0782
                  EISSN:1557-7317
                  DOI:10.1145/3502158
                  Issue’s Table of Contents

                  Copyright © 2021 ACM

                  Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                  Publisher

                  Association for Computing Machinery

                  New York, NY, United States

                  Publication History

                  • Published: 19 November 2021

                  Permissions

                  Request permissions about this article.

                  Request Permissions

                  Check for updates

                  Qualifiers

                  • research-article
                  • Popular
                  • Refereed

                PDF Format

                View or Download as a PDF file.

                PDF

                eReader

                View online with eReader.

                eReader

                HTML Format

                View this article in HTML Format .

                View HTML Format