skip to main content
10.1145/3452143.3465512acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
tutorial

Differential Equations for Feynman Integrals

Published:18 July 2021Publication History

ABSTRACT

Feynman integrals are notoriously difficult multidimensional integrals arising in many physical problems. We present various approaches for determining the differential equations satisfied by Feynman integrals. The approach is based on the analysis of the algebraic geometry associated with the Feynman integrals and the use of the creative telescoping algorithm.

References

  1. M. E. Peskin and D. V. Schroeder, "An Introduction to quantum field theory," (1995), Addison-Wesley Advanced Book ProgramGoogle ScholarGoogle Scholar
  2. P. Vanhove, "The physics and the mixed Hodge structure of Feynman integrals," Proc. Symp. Pure Math. 88 (2014), 161--194 [arXiv:1401.6438 [hep-th]].Google ScholarGoogle Scholar
  3. Noboru Nakanishi, "Graph Theory and Feynman Integrals", Gordon & Breach Science Publishers Ltd (1971)Google ScholarGoogle Scholar
  4. C. Bogner and S. Weinzierl, "Feynman graph polynomials," Int. J. Mod. Phys. A 25 (2010), 2585--2618 [arXiv:1002.3458 [hep-ph]].Google ScholarGoogle ScholarCross RefCross Ref
  5. S. Weinberg, "High-Energy Behavior in Quantum Field Theory," Phys. Rev. 118 (1960), 838--849Google ScholarGoogle ScholarCross RefCross Ref
  6. J. H. Lowenstein and W. Zimmermann, "The Power Counting Theorem for Feynman Integrals with Massless Propagators," Commun. Math. Phys. 44 (1975), 73--86Google ScholarGoogle ScholarCross RefCross Ref
  7. E. R. Speer, "Ultraviolet and Infrared Singularity Structure of Generic Feynman Amplitudes," Ann. Inst. H. Poincare Phys. Theor. 23 (1975), 1--21Google ScholarGoogle Scholar
  8. E. R. Speer, "Generalized Feynman Amplitudes," vol. 62 of Annals of Mathematics Studies. Princeton University Press, New Jersey, Apr., 1969.Google ScholarGoogle Scholar
  9. E. Panzer, "Feynman Integrals and Hyperlogarithms," Thesis: PhD Humboldt U. (2015) [arXiv:1506.07243 [math-ph]].Google ScholarGoogle Scholar
  10. S. Bloch, H. Esnault and D. Kreimer, "On Motives associated to graph polynomials," Commun. Math. Phys. 267 (2006), 181--225 [arXiv:math/0510011 [math.AG]].Google ScholarGoogle ScholarCross RefCross Ref
  11. D. J. Broadhurst and D. Kreimer, "Knots and Numbers in Ph?? 4 Theory to 7 Loops and Beyond," Int. J. Mod. Phys. C 6 (1995) 519 [hep-ph/9504352].Google ScholarGoogle ScholarCross RefCross Ref
  12. D. J. Broadhurst and D. Kreimer, "Association of Multiple Zeta Values with Positive Knots via Feynman Diagrams Up to 9 Loops," Phys. Lett. B 393 (1997) 403 [hep-th/9609128].Google ScholarGoogle ScholarCross RefCross Ref
  13. M. Kontsevich and D. Zagier, "Periods", in Engquist, Björn; Schmid, Wilfried, Mathematics unlimited -- 2001 and beyond, Berlin, New York: Springer-Verlag, pp. 771--808.Google ScholarGoogle ScholarCross RefCross Ref
  14. T. Bitoun, C. Bogner, R. P. Klausen and E. Panzer, "Feynman Integral Relations from Parametric Annihilators," Lett. Math. Phys. 109 (2019) no.3, 497--564. [arXiv:1712.09215 [hep-th]].Google ScholarGoogle ScholarCross RefCross Ref
  15. I. N. Bernshtein, "The analytic continuation of generalized functions with respect to a parameter", Functional Analysis and Its Applications 6 (1972) pp. 273--285.Google ScholarGoogle ScholarCross RefCross Ref
  16. F. Loeser and C. Sabbah, "Caractérisation des D-modules hypergéométriques irréductibles sur le tore", C. R. Acad. Sci. Paris Sér. I Math. 312 (1991) pp. 735--738. erratum: "Caractérisation des D-modules hypergéométriques irréductibles sur le tore, II", C. R. Acad. Sci. Paris Sér. I Math. 315 (1992) pp. 1263--1264.Google ScholarGoogle Scholar
  17. J. M. Henn, "Lectures on Differential Equations for Feynman Integrals," J. Phys. A 48 (2015), 153001 [arXiv:1412.2296 [hep-ph]].Google ScholarGoogle ScholarCross RefCross Ref
  18. A. G. Grozin, "Integration by Parts: an Introduction," Int. J. Mod. Phys. A 26 (2011), 2807--2854 [arXiv:1104.3993 [hep-ph]].Google ScholarGoogle ScholarCross RefCross Ref
  19. A. Primo and L. Tancredi, "On the maximal cut of Feynman integrals and the solution of their differential equations," Nucl. Phys. B 916 (2017), 94--116 [arXiv:1610.08397 [hep-ph]].Google ScholarGoogle ScholarCross RefCross Ref
  20. O. V. Tarasov, "Methods for deriving functional equations for Feynman integrals," J. Phys. Conf. Ser. 920 (2017) no.1, 012004 [arXiv:1709.07058 [hep-ph]].Google ScholarGoogle ScholarCross RefCross Ref
  21. R. N. Lee and A. A. Pomeransky, "Differential equations, recurrence relations, and quadratic constraints for L-loop two-point massive tadpoles and propagators," JHEP 08 (2019), 027 [arXiv:1904.12496 [hep-ph]].Google ScholarGoogle Scholar
  22. C. Doran, A. Novoseltsev and P. Vanhove, work in progress.Google ScholarGoogle Scholar
  23. Frédéric Chyzak, "An extension of Zeilberger's fast algorithm to general holonomic functions", Discrete Mathematics, 217 (1--3) 115--134, 2000.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Frédéric Chyzak, "Creative Telescoping for Parametrised Integration and Summation", Les cours du CIRM, Vol. 2, no 1 (2011), Course no II, p. 1--37.Google ScholarGoogle ScholarCross RefCross Ref
  25. R. P. Klausen, "Hypergeometric Series Representations of Feynman Integrals by Gkz Hypergeometric Systems," JHEP 04 (2020), 121 [arXiv:1910.08651 [hep-th]].Google ScholarGoogle Scholar
  26. P. Vanhove, "Feynman Integrals, Toric Geometry and Mirror Symmetry," [arXiv:1807.11466 [hep-th]].Google ScholarGoogle Scholar
  27. L. de la Cruz, "Feynman Integrals as A-Hypergeometric Functions," JHEP 12 (2019), 123 [arXiv:1907.00507 [math-ph]].Google ScholarGoogle Scholar
  28. I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, "Generalized Euler Integrals and A-Hypergeometric Functions", Advances in Math. 84 (1990), 255--271Google ScholarGoogle ScholarCross RefCross Ref
  29. I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, "Discriminants, Resultants and Multidimensional Determinants", Birkhäuser Boston, 1994Google ScholarGoogle ScholarCross RefCross Ref
  30. S. Hosono, "GKZ Systems, Gröbner Fans, and Moduli Spaces of Calabi-Yau Hypersurfaces,", Birkhäuser Boston, Boston, MA, (1998)Google ScholarGoogle Scholar
  31. J. Stienstra, "Resonant Hypergeometric Systems and Mirror Symmetry," alggeom/9711002Google ScholarGoogle Scholar

Index Terms

  1. Differential Equations for Feynman Integrals

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ISSAC '21: Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation
      July 2021
      379 pages
      ISBN:9781450383820
      DOI:10.1145/3452143

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 18 July 2021

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • tutorial

      Acceptance Rates

      Overall Acceptance Rate395of838submissions,47%
    • Article Metrics

      • Downloads (Last 12 months)15
      • Downloads (Last 6 weeks)0

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader