skip to main content
10.1145/3452143.3465515acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Positive Existential Definability with Unit, Addition and Coprimeness

Published:18 July 2021Publication History

ABSTRACT

We consider positively existentially definable sets in the structure {Ζ; 1, +,⊥}. It is well known that the elementary theory of this structure is undecidable while the existential theory is decidable. We show that after the extension of the signature with the unary '-' functional symbol, binary symbols for dis-equality ≠ and GCD (.,.)=d for every fixed positive integer d, every positive existential formula in this extended language is equivalent in Ζ to some positive quantifier-free formula.

Then we get some corollaries from the main result. The binary order ≤ and dis-coprimeness /⊥ relations are not positively existentially definable in the structure {Ζ;1,+,⊥}. Every positively existentially definable set in the structure {N;S,⊥} is quantifier-free definable in {N;S,≠,0 ⊥}. We also get a decidable fragment of the undecidable ∀∃-Theory of the structure {Ζ;1,+,ł≤,|}, where | is a binary predicate symbol for the integer divisibility relation.

References

  1. Anatoly P. Beltyukov. 1976. Decidability of the universal theory of natural numbers with addition and divisibility. Zapiski Nauchnyh Seminarov LOMI, Vol. 60 (1976), 15--28. http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=znsl&paperid=2066&option_lang=eng (in Russian).Google ScholarGoogle Scholar
  2. Itshak Borosh and Leon B. Treybig. 1976. Bounds on positive integral solutions of linear Diophantine equations. Proc. Amer. Math. Soc., Vol. 55, 2 (feb 1976), 299--299. https://doi.org/10.1090/s0002-9939-1976-0396605-3Google ScholarGoogle ScholarCross RefCross Ref
  3. Marius Bozga and Radu Iosif. 2005. On Decidability Within the Arithmetic of Addition and Divisibility. In Foundations of Software Science and Computational Structures. Springer Berlin Heidelberg, 425--439. https://doi.org/10.1007/978-3-540-31982-5_27Google ScholarGoogle Scholar
  4. Patrick Cégielski and Denis Richard. 2013. In memoriam of Alan Robert Woods. In New Studies in Weak Arithmetics, Lecture Notes 211, Patrick Cégielski, Charalampos Cornaros, and Costas Dimitracopoulos (Eds.). CSLI Publications, Stanford, 15--31.Google ScholarGoogle Scholar
  5. Christoph Haase. 2018. A survival guide to Presburger arithmetic. ACM SIGLOG News, Vol. 5, 3 (jul 2018), 67--82. https://doi.org/10.1145/3242953.3242964Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. 2009. Reachability in Succinct and Parametric One-Counter Automata. In CONCUR 2009 - Concurrency Theory. Springer Berlin Heidelberg, 369--383. https://doi.org/10.1007/978-3-642-04081-8_25Google ScholarGoogle Scholar
  7. Ivan Korec. 2001. A list of arithmetical structures complete with respect to the first-order definability. Theoretical Computer Science, Vol. 257, 1--2 (apr 2001), 115--151. https://doi.org/10.1016/s0304-3975(00)00113-4Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Antonia Lechner. 2015. Synthesis Problems for One-Counter Automata. In Lecture Notes in Computer Science. Springer International Publishing, 89--100. https://doi.org/10.1007/978-3-319-24537-9_9Google ScholarGoogle Scholar
  9. Antonia Lechner, Joël Ouaknine, and James Worrell. 2015. On the Complexity of Linear Arithmetic with Divisibility. In 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science. IEEE. https://doi.org/10.1109/lics.2015.67Google ScholarGoogle Scholar
  10. Leonard Lipshitz. 1978. The Diophantine problem for addition and divisibility. Trans. Amer. Math. Soc., Vol. 235 (1978), 271--271. https://doi.org/10.1090/s0002-9947-1978-0469886-1Google ScholarGoogle ScholarCross RefCross Ref
  11. Leonard Lipshitz. 1981. Some remarks on the Diophantine problem for addition and divisibility. Bulletin de la Société mathématique de Belgique. Série B, Vol. 33, 1 (1981), 41--52.Google ScholarGoogle Scholar
  12. Kurt Mahler. 1958. On the Chinese Remainder Theorem. Mathematische Nachrichten, Vol. 18, 1--6 (1958), 120--122. https://doi.org/10.1002/mana.19580180112Google ScholarGoogle Scholar
  13. Mojżesz Presburger. 1929. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In Comptes Rendus du I congrès de Mathématiciens des Pays Slaves. 92--101.Google ScholarGoogle Scholar
  14. Guillermo A. Pérez and Ritam Raha. 2020. Revisiting Synthesis for One-Counter Automata. (May 2020). arxiv: 2005.01071 [cs.LO]Google ScholarGoogle Scholar
  15. Denis Richard. 1982. La théorie sans égalité du successeur et de la coprimarité des entiers naturels est indécidable. Le prédicat de primarité est définissable dans le langage de cette théorie. Comptes Rendus de l'Académie des Sciences. Série I: Mathématique, Vol. 294 (1982), 143--146.Google ScholarGoogle Scholar
  16. Denis Richard. 1989. Definability in Terms of the Successor Function and the Coprimeness Predicate in the Set of Arbitrary Integers. The Journal of Symbolic Logic, Vol. 54, 4 (dec 1989), 1253. https://doi.org/10.2307/2274815Google ScholarGoogle ScholarCross RefCross Ref
  17. Julia Robinson. 1949. Definability and decision problems in arithmetic. Journal of Symbolic Logic, Vol. 14, 2 (jun 1949), 98--114. https://doi.org/10.2307/2266510Google ScholarGoogle ScholarCross RefCross Ref
  18. Bruno Scarpellini. 1984. Complexity of subcases of Presburger arithmetic. Trans. Amer. Math. Soc., Vol. 284, 1 (jan 1984), 203--203. https://doi.org/10.1090/s0002-9947-1984-0742421-9Google ScholarGoogle ScholarCross RefCross Ref
  19. Mikhail R. Starchak. 2018. Some Decidability and Definability Problems for the Predicate of Divisibility on Two Consecutive Numbers. Computer Tools in Education 6 (dec 2018), 5--15. https://doi.org/10.32603/2071-2340-2018-6-5-15 (in Russian).Google ScholarGoogle Scholar
  20. Mikhail R. Starchak. 2021. A Proof of Bel'tyukov,--,Lipshitz Theorem by quasi-Quantifier Elimination I. Definitions and GCD-Lemma. Vestnik St.Petersb. Univ. Math., Vol. 54, 3 (July 2021). To appear.Google ScholarGoogle Scholar
  21. Thomas Sturm. 2000. Linear Problems in Valued Fields. Journal of Symbolic Computation, Vol. 30, 2 (aug 2000), 207--219. https://doi.org/10.1006/jsco.1999.0303Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lou van den Dries and Alex J. Wilkie. 2003. The laws of integer divisibility, and solution sets of linear divisibility conditions. Journal of Symbolic Logic, Vol. 68, 2 (jun 2003), 503--526. https://doi.org/10.2178/jsl/1052669061Google ScholarGoogle ScholarCross RefCross Ref
  23. Joachim von zur Gathen and Malte Sieveking. 1978. A bound on solutions of linear integer equalities and inequalities. Proc. Amer. Math. Soc., Vol. 72, 1 (jan 1978), 155--155. https://doi.org/10.1090/s0002-9939-1978-0500555-0Google ScholarGoogle ScholarCross RefCross Ref
  24. Volker Weispfenning. 1988. The complexity of linear problems in fields. Journal of Symbolic Computation, Vol. 5, 1--2 (feb 1988), 3--27. https://doi.org/10.1016/s0747-7171(88)80003-8Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Volker Weispfenning. 1999. Mixed real-integre linear quantifier elimination. In Proceedings of the 1999 international symposium on Symbolic and algebraic computation - ISSAC textquotesingle99. ACM Press. https://doi.org/10.1145/309831.309888Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Alan R. Woods. 1981. Some problems in logic and number theory, and their connections. Ph.D. Dissertation. University of Manchester. https://staffhome.ecm.uwa.edu.au/ 00017049/thesis/WoodsPhDThesis.pdfGoogle ScholarGoogle Scholar

Index Terms

  1. Positive Existential Definability with Unit, Addition and Coprimeness

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        ISSAC '21: Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation
        July 2021
        379 pages
        ISBN:9781450383820
        DOI:10.1145/3452143

        Copyright © 2021 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 18 July 2021

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate395of838submissions,47%
      • Article Metrics

        • Downloads (Last 12 months)12
        • Downloads (Last 6 weeks)0

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader