skip to main content
10.1145/3452143.3465517acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

On the Smallest Ratio Problem of Lattice Bases

Published:18 July 2021Publication History

ABSTRACT

Let $(\mathbfb _1, łdots, \mathbfb _n )$ be a lattice basis with Gram-Schmidt orthogonalization $(\mathbfb _1^\ast, łdots, \mathbfb _n ^\ast )$, the ratios %quantities $\|\mathbfb _1 \|/\|\mathbfb _i ^\ast \|$ for $i = 1, łdots, n$ do arise in the analysis of many lattice algorithms and are somehow related to their performances. In this paper, we study the problem of minimizing the ratio $\|\mathbfb _1 \|/\|\mathbfb _n ^\ast \|$ over all bases $(\mathbfb _1, łdots, \mathbfb _n )$ of a given n-rank lattice. We first prove that there exists a basis $(\mathbfb _1, łdots, \mathbfb _n )$ for any n-rank lattice L such that $\|\mathbfb _1\| = \min_\mathbfv \in L\backslash\\mathbf0 \ \|\mathbfv \|$, $\|\mathbfb _1 \|/\|\mathbfb _i ^\ast \| łeq i$ and $\|\mathbfb _i \|/\|\mathbfb _i ^\ast \| łeq i^1.5 $ for $1 łeq i łeq n$. This leads us to introduce a new NP-hard computational problem, namely % that is, the \em smallest ratio problem (SRP): given an n-rank lattice L, find a basis $(\mathbfb _1, łdots, \mathbfb _n )$ of L such that $\|\mathbfb _1 \|/\|\mathbfb _n ^\ast \|$ is minimal. The problem inspires a new lattice invariant μ_n (L) = \min\\|\mathbfb _1\|/\|\mathbfb _n^\ast \|: (\mathbfb _1, łdots, \mathbfb _n) \textrm is a basis of L\ $ and a new lattice constant μ_n = \max μ_n (L)$ over all n-rank lattices L: both the minimum and maximum are justified. Some properties of μ_n (L)$ and μ_n $ are investigated. We also present an exact algorithm and an approximation algorithm for SRP. This is the first sound study of SRP. Our work is a tiny step towards solving an open problem proposed by Dadush-Regev-Stephens-Davidowitz (CCC '14) for tackling the closest vector problem with preprocessing, i.e., whether there exists a basis $(\mathbfb _1, łdots, \mathbfb _n )$ for any n-rank lattice s.t. $\max_1 łe i łe j łe n \|\vecb _i ^\ast \|/\vecb _j ^\ast \| łe \textrmpoly (n)$.

References

  1. D. Aggarwal, J. Li, P. Q. Nguyen, and N. Stephens-Davidowitz. Slide reduction, revisited -- filling the gaps in SVP approximation. In CRYPTO, pages 274--295, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Ajtai. The shortest vector problem in $L_2$ is NP-hard for randomized reductions (extended abstract). In STOC, pages 10--19, 1998.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Ajtai. Optimal lower bounds for the Korkine-Zolotareff parameters of a lattice and for Schnorr's algorithm for the shortest vector problem. Theory of Computing, 4(1):21--51, 2008. Preliminary version in STOC 2003.Google ScholarGoogle ScholarCross RefCross Ref
  4. L. Babai. On Lová sz' lattice reduction and the nearest lattice point problem. Combinatorica, 6(1):1--13, 1986.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. M. Bergé and J. Martinet. Sur un problème de dualite lié aux sphères en géométrie des nombres. Journal of Number Theory, 32:14--42, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  6. D. Dadush, O. Regev, and N. Stephens-Davidowitz. On the closest vector problem with a distance guarantee. In CCC, pages 98--109, 2014. Full version at https://arxiv.org/pdf/1409.8063.pdf.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. I. Dinur, G. Kindler, R. Raz, and S. Safra. Approximating CVP to within almost-polynomial factors is NP-hard. Combinatorica, 23(2):205--243, 2003.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. N. Gama, N. Howgrave-Graham, H. Koy, and P. Nguyen. Rankin's constant and blockwise lattice reduction. In CRYPTO, pages 112--130, 2006.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. N. Gama, N. Howgrave-Graham, and P. Q. Nguyen. Symplectic lattice reduction and NTRU. In EUROCRYPT, pages 233--253, 2006.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell's inequality. In STOC, pages 207--216, 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. N. Gama, P. Q. Nguyen, and O. Regev. Lattice enumeration using extreme pruning. In EUROCRYPT, pages 257--278, 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. G. Hanrot, X. Pujol, and D. Stehlé. Analyzing blockwise lattice algorithms using dynamical systems. In CRYPTO, pages 447--464, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  13. G. Hanrot and D. Stehlé . Improved analysis of Kannan's shortest lattice vector algorithm. In CRYPTO, pages 170--186, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  14. G. Hanrot and D. Stehlé. Worst-case Hermite-Korkine-Zolotarev reduced lattice bases. Available at http://arxiv.org/abs/0801.3331, 2008.Google ScholarGoogle Scholar
  15. J. Håstad and J. C. Lagarias. Simultaneously good bases of a lattice and its reciprocal lattice. Mathematische Annalen, 287(1):163--174, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  16. I. Haviv and O. Regev. Tensor-based hardness of the shortest vector problem to within almost polynomial factors. Theory of Computing, 8(1):513--531, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  17. B. Helfrich. Algorithms to construct Minkowski reduced and Hermite reduced lattice bases. Theoretical Computer Science, 41:125--139, 1985.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. Hermite. Extraits de lettres de M. Hermite à M. Jacobi sur différents objets de la théorie des nombres, deuxième lettre. J. Reine Angew. Math., 40:279--290, 1850.Google ScholarGoogle ScholarCross RefCross Ref
  19. R. Kannan. Minkowski's convex body theorem and integer programming. Math. Oper. Res., 12(3):415--440, 1987. Preliminary version in STOC 1983.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. A. Korkine and G. Zolotareff. Sur les formes quadratiques. Mathematische Annalen, 6:366--389, 1873.Google ScholarGoogle ScholarCross RefCross Ref
  21. J. C. Lagarias, H. W. Lenstra Jr., and C. P. Schnorr. Korkine-Zolotarev bases and successive minima of a lattice and its reciprocal. Combinatorica, 10:333--348, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  22. A. K. Lenstra. Lattices and factorization of polynomials over algebraic number fields. In EUROCAL, pages 32--39, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  23. A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261:366--389, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  24. J. Li. On the smallest ratio problem of lattice bases. Full version of ISSAC '21 on pure.royalholloway.ac.uk.Google ScholarGoogle Scholar
  25. J. Li and P. Q. Nguyen. Approximating the densest sublattice from Rankin's inequality. LMS J. Comput. Math., 17(Special Issue A):92--111, 2014. Contributed to ANTS-XI, 2014.Google ScholarGoogle Scholar
  26. J. Li and P. Q. Nguyen. Computing a lattice basis revisited. In ISSAC, pages 275--282, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. J. Li and P. Q. Nguyen. A complete analysis of the BKZ lattice reduction algorithm. Available at https://eprint.iacr.org/2020/1237.pdf, 2020.Google ScholarGoogle Scholar
  28. D. Micciancio and S. Goldwasser. Complexity of lattice problems: a cryptographic perspective. Kluwer Academic Publishers, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  29. D. Micciancio and M. Walter. Practical, predictable lattice basis reduction. In EUROCRYPT, pages 820--849, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. A. Neumaier. Bounding basis reduction properties. Designs, Codes and Cryptography, 84:237--259, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. R. A. Rankin. On positive definite quadratic forms. Journal of the London Mathematical Society, 28:309--314, 1953.Google ScholarGoogle ScholarCross RefCross Ref
  32. C. P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical Computer Science, 53:201--224, 1987.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. C. P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program., 66:181--199, 1994.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. M. Seysen. Simultaneous reduction of a lattice basis its reciprocal basis. Combinatorica, 13(3):363--376, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  35. P. van Emde Boas. Another NP-complete problem and the complexity of computing short vectors in a lattice. Tecnical Report 81-04, Department of Mathmatics, University of Amsterdam, 1981.Google ScholarGoogle Scholar

Index Terms

  1. On the Smallest Ratio Problem of Lattice Bases

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ISSAC '21: Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation
      July 2021
      379 pages
      ISBN:9781450383820
      DOI:10.1145/3452143

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 18 July 2021

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate395of838submissions,47%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader