skip to main content
10.1145/3457388.3458869acmconferencesArticle/Chapter ViewAbstractPublication PagescfConference Proceedingsconference-collections
research-article

Tapeout of a RISC-V crypto chip with hardware trojans: a case-study on trojan design and pre-silicon detectability

Published:11 May 2021Publication History

ABSTRACT

This paper presents design and integration of four hardware Trojans (HTs) into a post-quantum-crypto-enhanced RISC-V micro-controller, which was taped-out in September 2020. We cover multiple HTs ranging from a simple denial-of-service HT to a side-channel HT transmitting arbitrary information to external observers. For each HT, we give estimations of the detectability by the microcontroller-integration team using design tools or by simulation. We conclude that some HTs are easily detected by design-tool warnings. Other powerful HTs, modifying software control flow, cause little disturbance, but require covert executable code modifications. With this work, we strengthen awareness for HT risks and present a realistic testing device for HT detection tools.

References

  1. S. Adee. 2008. The Hunt For The Kill Switch. IEEE Spectr., 45, 5, (May 2008), 34--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Roberto Avanzi et al. 2019. CRYSTALS-Kyber (version 2.0). https://pq-crystals.org/kyber/data/kyber-specification-round2.pdf.Google ScholarGoogle Scholar
  3. Reza Azarderakhsh et al. 2020. Supersingular Isogeny Key Encapsulation. https://sike.org/files/SIDH-spec.pdf.Google ScholarGoogle Scholar
  4. S. Bhasin, J. Danger, S. Guilley, X. T. Ngo, and L. Sauvage. 2013. Hardware Trojan Horses in Cryptographic IP Cores. In 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography. (Aug. 2013), 15--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Cruz, Y. Huang, P. Mishra, and S. Bhunia. 2018. An automated configurable Trojan insertion framework for dynamic trust benchmarks. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE), 1598--1603. Google ScholarGoogle ScholarCross RefCross Ref
  6. A. Ferraiuolo, X. Zhang, and M. Tehranipoor. 2012. Experimental analysis of a ring oscillator network for hardware Trojan detection in a 90nm ASIC. In Proc. 2012 IEEE/ACM Int. Conf. on Comput.-Aided Des.. (Nov. 2012), 37--42.Google ScholarGoogle Scholar
  7. Eiichiro Fujisaki and Tatsuaki Okamoto. 2013. Secure Integration of Asymmetric and Symmetric Encryption Schemes. J. Cryptology, 26, 1, 80--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi, E. Flamand, F. K. Gürkaynak, and L. Benini. 2017. Near-Threshold RISC-V Core With DSP Extensions for Scalable IoT Endpoint Devices. IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 25, 10, 2700--2713. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Syed Kamran Haider, Chenglu Jin, and Marten van Dijk. 2016. Advancing the State-of-the-Art in Hardware Trojans Design. CoRR, abs/1605.08413. arXiv: 1605.08413.Google ScholarGoogle Scholar
  10. R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor. 2010. Trustworthy Hardware: Identifying and Classifying Hardware Trojans. Computer, 43, 10, (Oct. 2010), 39--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Samuel T King, Joseph Tucek, Anthony Cozzie, Chris Grier, Weihang Jiang, and Yuanyuan Zhou. 2008. Designing and Implementing Malicious Hardware. Leet, 8, 1--8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM, 52, 7, (July 2009), 107--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Lang Lin, Markus Kasper, Tim Güneysu, Christof Paar, and Wayne Burleson. 2009. Trojan Side-Channels: Lightweight Hardware Trojans through Side-Channel Engineering. In Proc. CHES '09. Christophe Clavier and Kris Gaj, (Eds.) Springer Berlin Heidelberg, Berlin, Heidelberg, 382--395. ISBN: 978-3-642-04138-9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Y. Liu, Y. Jin, A. Nosratinia, and Y. Makris. 2017. Silicon Demonstration of Hardware Trojan Design and Detection in Wireless Cryptographic ICs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst, 25, 4, 1506--1519. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. D. Merli, J. Heyszl, B. Heinz, D. Schuster, F. Stumpf, and G. Sigl. 2013. Localized electromagnetic analysis of RO PUFs. In 2013 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), 19--24. Google ScholarGoogle ScholarCross RefCross Ref
  16. Michael Muehlberghuber, Frank K. Gürkaynak, Thomas Korak, Philipp Dunst, and Michael Hutter. 2013. Red Team vs. Blue Team Hardware Trojan Analysis: Detection of a Hardware Trojan on an Actual ASIC. In Proc. 2nd Int. Workshop on Hardware and Architectural Support for Secur. and Privacy Article 1, 8 pages. ISBN: 9781450321181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. OpenHW Group. 2020. PULP Hardware Loop Extensions. Retrieved Mar. 25, 2020 from https://core-v-docs-verif-strat.readthedocs.io/projects/cv32e40p_um/en/latest/pulp_hw_loop.html.Google ScholarGoogle Scholar
  18. Bicky Shakya, Tony He, Hassan Salmani, Domenic Forte, Swarup Bhunia, and Mark Tehranipoor. 2017. Benchmarking of Hardware Trojans and Maliciously Affected Circuits. HASS, 1, 1, (Mar. 2017), 85--102. Google ScholarGoogle ScholarCross RefCross Ref
  19. Sergei Skorobogatov and Christopher Woods. 2012. Breakthrough Silicon Scanning Discovers Backdoor in Military Chip. In Proc. 2012 Int. Workshop on Cryptographic Hardware and Embedded Syst., 23--40. ISBN: 978-3-642-33027-8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. X. Wang, T. Mal-Sarkar, A. Krishna, S. Narasimhan, and S. Bhunia. 2012. Software exploitable hardware Trojans in embedded processor. In 2012 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 55--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor. 2016. Hardware Trojans: Lessons Learned after One Decade of Research. ACM Trans. Des. Automat. Electron. Syst., 22, 1, Article 6, (May 2016), 23 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mingfu Xue, Chongyan Gu, Weiqiang Liu, Shichao Yu, and Máire O'Neill. 2020. Ten years of hardware Trojans: a survey from the attacker's perspective. IET Comput. & Digit. Techn., 14, 6, (Nov. 2020), 231--246.Google ScholarGoogle Scholar
  23. K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester. 2016. A2: Analog Malicious Hardware. In Proc. 2016 IEEE Symp. on Secur. and Privacy, 18--37. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Tapeout of a RISC-V crypto chip with hardware trojans: a case-study on trojan design and pre-silicon detectability

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in
              • Published in

                cover image ACM Conferences
                CF '21: Proceedings of the 18th ACM International Conference on Computing Frontiers
                May 2021
                254 pages
                ISBN:9781450384049
                DOI:10.1145/3457388

                Copyright © 2021 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 11 May 2021

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article

                Acceptance Rates

                Overall Acceptance Rate240of680submissions,35%

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader