Cited By
View all- Kim JKim T(2023)ROSETTA: A Resource and Energy-Efficient Inference Processor for Recurrent Neural Networks Based on Programmable Data Formats and Fine Activation PruningIEEE Transactions on Emerging Topics in Computing10.1109/TETC.2022.323096111:3(650-663)Online publication date: 1-Jul-2023
- Perez TGoncalves MGobatto LBrandalero MAzambuja JPagliarini S(2022)G-GPU: A Fully-Automated Generator of GPU-like ASIC Accelerators2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)10.23919/DATE54114.2022.9774758(544-547)Online publication date: 14-Mar-2022
- Que ZNakahara HFan HLi HMeng JTsoi KNiu XNurvitadhi ELuk W(2022)Remarn: A Reconfigurable Multi-threaded Multi-core Accelerator for Recurrent Neural NetworksACM Transactions on Reconfigurable Technology and Systems10.1145/353496916:1(1-26)Online publication date: 22-Dec-2022
- Show More Cited By