skip to main content
research-article

MSIPA: Multi-Scale Interval Pattern-Aware Network for ICU Transfer Prediction

Authors Info & Claims
Published:20 July 2021Publication History
Skip Abstract Section

Abstract

Accurate prediction of patients’ ICU transfer events is of great significance for improving ICU treatment efficiency. ICU transition prediction task based on Electronic Health Records (EHR) is a temporal mining task like many other health informatics mining tasks. In the EHR-based temporal mining task, existing approaches are usually unable to mine and exploit patterns used to improve model performance. This article proposes a network based on Interval Pattern-Aware, Multi-Scale Interval Pattern-Aware (MSIPA) network. MSIPA mines different interval patterns in temporal EHR data according to the short, medium, and long intervals. MSIPA utilizes the Scaled Dot-Product Attention mechanism to query the contexts corresponding to the three scale patterns. Furthermore, Transformer will use all three types of contextual information simultaneously for ICU transfer prediction. Extensive experiments on real-world data demonstrate that an MSIPA network outperforms state-of-the-art methods.

References

  1. Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer normalization. arxiv:1607.06450. Retrieved from https://arxiv.org/abs/1607.06450.Google ScholarGoogle Scholar
  2. Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to align and translate. In Proceedings of the 3rd International Conference on Learning Representations. Retrieved from http://arxiv.org/abs/1409.0473.Google ScholarGoogle Scholar
  3. Smaranda Belciug and Florin Gorunescu. 2020. Intelligent Decision Support Systems—A Journey to Smarter Healthcare. Springer. DOI:https://doi.org/10.1007/978-3-030-14354-1 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Yoshua Bengio, Patrice Y. Simard, and Paolo Frasconi. 1994. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks 5, 2 (1994), 157–166. DOI:https://doi.org/10.1109/72.279181 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. William Caicedo-Torres and Jairo A. Gutiérrez. 2020. ISeeU2: Visually interpretable ICU mortality prediction using deep learning and free-text medical notes. arxiv:2005.09284. Retrieved from https://arxiv.org/abs/2005.09284.Google ScholarGoogle Scholar
  6. Zhengping Che, David C. Kale, Wenzhe Li, Mohammad Taha Bahadori, and Yan Liu. 2015. Deep computational phenotyping. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 507–516. DOI:https://doi.org/10.1145/2783258.2783365 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Wanyu Chen, Fei Cai, Honghui Chen, and Maarten de Rijke. 2019. A dynamic co-attention network for session-based recommendation. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 1461–1470. DOI:https://doi.org/10.1145/3357384.3357964 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, and Walter F. Stewart. 2016. RETAIN: An interpretable predictive model for healthcare using reverse time attention mechanism. In Proceedings of the 30th Annual Conference on Neural Information Processing Systems (NIPS’16). Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett (Eds.). 3504–3512. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chun-An Chou, Qingtao Cao, Shao-Jen Weng, and Che-Hung Tsai. 2020. Mixed-integer optimization approach to learning association rules for unplanned ICU transfer. Artificial Intelligence in Medicine 103, 2 (2020), 101806. DOI:https://doi.org/10.1016/j.artmed.2020.101806Google ScholarGoogle ScholarCross RefCross Ref
  10. Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. In Proceedings of the NIPS 2014 Workshop on Deep Learning.Google ScholarGoogle Scholar
  11. David Cuadrado, David Riaño, Josep Gómez, María Bodí, Gonzalo Sirgo, Federico Esteban, Rafael García, and Alejandro Rodríguez. 2019. Pursuing optimal prediction of discharge time in ICUs with machine learning methods. In Proceedings of the 17th Conference on Artificial Intelligence in Medicine. David Riaño, Szymon Wilk, and Annette ten Teije (Eds.), Lecture Notes in Computer Science, Vol. 11526. Springer, 150–154. DOI:https://doi.org/10.1007/978-3-030-21642-9_20Google ScholarGoogle Scholar
  12. Jeffrey L. Elman. 1990. Finding structure in time. Cognitive Science 14, 2 (1990), 179-211. DOI:https://doi.org/10.1016/0364-0213(90)90002-EGoogle ScholarGoogle ScholarCross RefCross Ref
  13. Tom Fawcett. 2005. An introduction to ROC analysis. Pattern Recognition Letters 27, 8 (2005), 861–874. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Felix A. Gers, Jürgen Schmidhuber, and Fred A. Cummins. 2000. Learning to forget: Continual prediction with LSTM. Neural Computation 12, 10 (2000), 2451–2471. DOI:https://doi.org/10.1162/089976600300015015 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Julien Grand-Clément, Carri W. Chan, Vineet Goyal, and Gabriel J. Escobar. 2020. Robust policies for proactive ICU transfers. arxiv:2002.06247. Retrieved from https://arxiv.org/abs/2002.06247.Google ScholarGoogle Scholar
  16. Joyce C. Ho, Joydeep Ghosh, and Jimeng Sun. 2014. Marble: High-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 115–124. DOI:https://doi.org/10.1145/2623330.2623658 Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (1997), 1735–1780. DOI:https://doi.org/10.1162/neco.1997.9.8.1735 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Wenqi Hu, Carri W. Chan, José R. Zubizarreta, and Gabriel J. Escobar. 2018. An examination of early transfers to the ICU based on a physiologic risk score. Manufacturing & Service Operations Management 20, 3 (2018), 531–549. DOI:https://doi.org/10.1287/msom.2017.0658 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Bo Jin, Haoyu Yang, Leilei Sun, Chuanren Liu, Yue Qu, and Jianing Tong. 2018. A treatment engine by predicting next-period prescriptions. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1608–1616. DOI:https://doi.org/10.1145/3219819.3220095 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Alistair E. W. Johnson, Tom J. Pollard, Lu Shen, Li-wei H. Lehman, Mengling Feng, Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G. Mark. 2016. MIMIC-III, a freely accessible critical care database. Scientific Data 3, 1 (2016), 160035. DOI:https://doi.org/10.1038/sdata.2016.35Google ScholarGoogle ScholarCross RefCross Ref
  21. Jens Keilwagen, Ivo Grosse, and Jan Grau. 2014. Area under precision-recall curves for weighted and unweighted data. PLoS ONE 9, 3 (2014), e92209.Google ScholarGoogle ScholarCross RefCross Ref
  22. Ahmad F. Klaib and Maryam S. Nuser. 2019. Evaluating EHR and health care in Jordan according to the international health metrics network (HMN) framework and standards: A case study of Hakeem. IEEE Access 7 (2019), 51457–51465. DOI:https://doi.org/10.1109/ACCESS.2019.2911684Google ScholarGoogle ScholarCross RefCross Ref
  23. Xuanjing Li, Dacheng Liu, Na Geng, and Xiaolei Xie. 2019. Optimal ICU admission control with premature discharge. IEEE Transactions on Automation Science and Engineering 16, 1 (2019), 148–164. DOI:https://doi.org/10.1109/TASE.2018.2827664Google ScholarGoogle ScholarCross RefCross Ref
  24. Zhaohui Liang, Jun Liu, Aihua Ou, Honglai Zhang, Ziping Li, and Jimmy Xiangji Huang. 2019. Deep generative learning for automated EHR diagnosis of traditional Chinese medicine. Computer Methods and Programs in Biomedicine 174 (2019), 17–23. DOI:https://doi.org/10.1016/j.cmpb.2018.05.008Google ScholarGoogle ScholarCross RefCross Ref
  25. Donghua Liu, Jing Li, Bo Du, Jun Chang, and Rong Gao. 2019. DAML: Dual attention mutual learning between ratings and reviews for item recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 344–352. DOI:https://doi.org/10.1145/3292500.3330906 Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Melina Loreto, Thiago Lisboa, and Viviane P. Moreira. 2020. Early prediction of ICU readmissions using classification algorithms. Computers in Biology and Medicine, 118 (2020), 103636. DOI:https://doi.org/10.1016/j.compbiomed.2020.103636Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Fenglong Ma, Radha Chitta, Jing Zhou, Quanzeng You, Tong Sun, and Jing Gao. 2017. Dipole: Diagnosis prediction in healthcare via attention-based bidirectional recurrent neural networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 1903–1911. DOI:https://doi.org/10.1145/3097983.3098088 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Liantao Ma, Junyi Gao, Yasha Wang, Chaohe Zhang, Jiangtao Wang, Wenjie Ruan, Wen Tang, Xin Gao, and Xinyu Ma. 2020. AdaCare: Explainable clinical health status representation learning via scale-adaptive feature extraction and recalibration. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference , and the 10th AAAI Symposium on Educational Advances in Artificial Intelligence. AAAI Press, 825–832. Retrieved from https://aaai.org/ojs/index.php/AAAI/article/view/5427.Google ScholarGoogle Scholar
  29. Xin Ma, Yabin Si, Zifan Wang, and Youqing Wang. 2020. Length of stay prediction for ICU patients using individualized single classification algorithm. Computer Methods and Programs in Biomedicine 186 (2020), 105224. DOI:https://doi.org/10.1016/j.cmpb.2019.105224Google ScholarGoogle ScholarCross RefCross Ref
  30. Seyedsalim Malakouti and Milos Hauskrecht. 2019. Predicting patient’s diagnoses and diagnostic categories from clinical-events in EHR data. In Proceedings of the 17th Conference on Artificial Intelligence in Medicine. 125–130. DOI:https://doi.org/10.1007/978-3-030-21642-9_17Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Oleg G. Metsker, Vozniuk Igor, Georgy Kopanitsa, Elena Morozova, and Prohorova Maria. 2020. Stroke ICU patient mortality day prediction. In Proceedings of the 20th International Conference on Computational Science, Valeria V. Krzhizhanovskaya, Gábor Závodszky, Michael Harold Lees, Jack J. Dongarra, Peter M. A. Sloot, Sérgio Brissos, and João Teixeira (Eds.), Lecture Notes in Computer Science, Vol. 12140, Springer, 390–405. DOI:https://doi.org/10.1007/978-3-030-50423-6_29Google ScholarGoogle Scholar
  32. Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. 2014. Recurrent models of visual attention. In Proceedings of the 27th International Conference on Neural Information Processing Systems. 2204–2212. Retrieved from http://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Dinh C. Nguyen, Pubudu N. Pathirana, Ming Ding, and Aruna Seneviratne. 2019. Blockchain for secure EHRs sharing of mobile cloud based e-health systems. IEEE Access 7 (2019), 66792–66806. DOI:https://doi.org/10.1109/ACCESS.2019.2917555Google ScholarGoogle ScholarCross RefCross Ref
  34. Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M. Dai, Nissan Hajaj, Peter J. Liu, Xiaobing Liu, Mimi Sun, Patrik Sundberg, Hector Yee, Kun Zhang, Gavin E. Duggan, Gerardo Flores, Michaela Hardt, Jamie Irvine, Quoc V. Le, Kurt Litsch, Jake Marcus, Alexander Mossin, Justin Tansuwan, De Wang, James Wexler, Jimbo Wilson, Dana Ludwig, Samuel L. Volchenboum, Katherine Chou, Michael Pearson, Srinivasan Madabushi, Nigam H. Shah, Atul J. Butte, Michael Howell, Claire Cui, Greg Corrado, and Jeff Dean. 2018. Scalable and accurate deep learning for electronic health records. NPJ Digital Medicine 1, 1 (2018), 1–10.Google ScholarGoogle ScholarCross RefCross Ref
  35. Satya Narayan Shukla and Benjamin M. Marlin. 2020. Integrating physiological time series and clinical notes with deep learning for improved ICU mortality prediction. arxiv:2003.11059. Retrieved from https://arxiv.org/abs/2003.11059.Google ScholarGoogle Scholar
  36. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, United states, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.), Advances in Neural Information Processing Systems, Vol. 30, 5998–6008. Retrieved from http://papers.nips.cc/paper/7181-attention-is-all-you-need. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Teeradache Viangteeravat, Oguz Akbilgic, and Robert L. Davis. 2017. Analyzing electronic medical records to predict risk of DIT (death, intubation, or transfer to ICU) in pediatric respiratory failure or related conditions. In Proceedings of the Summit on Clinical Research Informatics,. AMIA. Retrieved from http://knowledge.amia.org/amia-64484-cri2017-1.3520710/t002-1.3521687/t002-1.3521688/a041-1.3521699/a042-1.3521696.Google ScholarGoogle Scholar
  38. Xin Wang, Wenwu Zhu, and Chenghao Liu. 2019. Social recommendation with optimal limited attention. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 1518–1527. DOI:https://doi.org/10.1145/3292500.3330939 Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Jingyi Wu, Ke Lin, Yu Lin, Yonghua Hu, and Guilan Kong. 2019. Predicting length of ICU stay via random forest. In Proceedings of the American Medical Informatics Association Annual Symposium. AMIA. Retrieved from http://knowledge.amia.org/69862-amia-1.4570936/t006-1.4574499/t006-1.4574500/3203507-1.4574519/3199832-1.4574516.Google ScholarGoogle Scholar
  40. Qitian Wu, Yirui Gao, Xiaofeng Gao, Paul Weng, and Guihai Chen. 2019. Dual sequential prediction models linking sequential recommendation and information dissemination. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 447–457. DOI:https://doi.org/10.1145/3292500.3330959 Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Rongjun Xie, Ibrahim Khalil, Shahriar Badsha, and Mohammed Atiquzzaman. 2020. An intelligent healthcare system with data priority based on multi vital biosignals. Computer Methods and Programs in Biomedicine 185 (2020), 105126. DOI:https://doi.org/10.1016/j.cmpb.2019.105126Google ScholarGoogle ScholarCross RefCross Ref
  42. Pranjul Yadav, Michael S. Steinbach, Vipin Kumar, and György J. Simon. 2018. Mining electronic health records (EHRs): A survey. ACM Computing Surveys 50, 6 (2018), 85:1–85:40. DOI:https://doi.org/10.1145/3127881 Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Yuan Yuan, Yuwei Lu, and Qi Wang. 2017. Tracking as a whole: Multi-target tracking by modeling group behavior with sequential detection. IEEE Transactions on Intelligent Transportation Systems 18, 12 (2017), 3339–3349. DOI:https://doi.org/10.1109/TITS.2017.2686871 Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Yuan Yuan, Dong Wang, and Qi Wang. 2017. Anomaly detection in traffic scenes via spatial-aware motion reconstruction. IEEE Transactions on Intelligent Transportation Systems 18, 5 (2017), 1198–1209. DOI:https://doi.org/10.1109/TITS.2016.2601655 Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Yutao Zhang, Robert Chen, Jie Tang, Walter F. Stewart, and Jimeng Sun. 2017. LEAP: Learning to prescribe effective and safe treatment combinations for multimorbidity. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 1315–1324. DOI:https://doi.org/10.1145/3097983.3098109 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. MSIPA: Multi-Scale Interval Pattern-Aware Network for ICU Transfer Prediction

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Knowledge Discovery from Data
        ACM Transactions on Knowledge Discovery from Data  Volume 16, Issue 1
        February 2022
        475 pages
        ISSN:1556-4681
        EISSN:1556-472X
        DOI:10.1145/3472794
        Issue’s Table of Contents

        Copyright © 2021 Association for Computing Machinery.

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 20 July 2021
        • Revised: 1 March 2021
        • Accepted: 1 March 2021
        • Received: 1 September 2020
        Published in tkdd Volume 16, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format