skip to main content
10.1145/3458380.3458423acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicdspConference Proceedingsconference-collections
research-article

Power System Harmonics Estimation using Generalized Least Mean Mixed Norm Adaptive Algorithm

Published:23 September 2021Publication History

ABSTRACT

If left uncontrolled, harmonic currents and voltages in power system present series operational problems both to operators and consumers of electricity ranging from efficiency drop to disruption. Proper monitoring of harmonics on the other hand depends on the accuracy of its estimation. In this paper a more noise resilient family of stochastic gradient based algorithms called Generalized Least Mean Mixed Norm (GLMMN) is applied for amplitude and phase angle estimation of a harmonic power system signal corrupted with a random Gaussian noise. The proposed GLMMN algorithm combines two stochastic gradient algorithms through a mixing parameter that updates online based on a sigmoid function of the instantaneous estimation error. To evaluate the performance of the proposed algorithm, seven distinct mixed norm cases has been examined for power signal containing harmonics in two lower signal to noise ratio (SNR) environments. Comparison of the results obtained using these mixed norm algorithms is made with the respective single error norm algorithms such as LMS, LMAT, LMF. The simulation results demonstrate that the estimation accuracy obtained using combination of two error norms is better than estimations based on single error norm algorithms under impulsive noise interferences.

References

  1. Sachin K. Jain and S.N. Singh. 2011. Harmonics estimation in emerging power system: key issues and challenges. Electric Power Systems Research, 81, 1754-1766. https://doi:10.1016/j.epsr.2011.05.004Google ScholarGoogle ScholarCross RefCross Ref
  2. Lee Ching Yin, Lee Wei Jen, Wang, Yen Nien and Gu Jyh Cherng. 1998. Effects of voltage harmonics on the electrical and mechanical performance of a three-phase induction motor. Industrial and Commercial Power Systems Technical Conference.,88-94Google ScholarGoogle Scholar
  3. Zahra Moravej, and Javad Enayati. 2015. Harmonics estimation in power systems using a fast hybrid algorithm. J. of Mod. & Sim. in Electrical & Electronics Eng. (MSEEE), 1,1-8.Google ScholarGoogle Scholar
  4. Yong N. Chang, Yao C. Hsieh and Chin S. Moo. 2000. Truncation effects of FFT on estimation of dynamic harmonics in power system. 2000 International Conference on Power System Technology, Proceedings, 155-160. https://doi:10.1109/ICPST.2000.898132Google ScholarGoogle Scholar
  5. Girgis Adly and Ham Fredric. 1980. A quantitative study of pitfalls in the FFT. IEEE Trans. on Aerospace and Electronic Systems, .AES-16, pp. 434-39. https://doi:10.1109/TAES.1980.308971Google ScholarGoogle Scholar
  6. Pratap S. Puhan, Pravat K. Ray and Gayadhar Panda. 2014. Power system harmonics estimation using signal processing techniques. IOSR J. of Electrical& Electronics Eng., 9, 109-115. https://doi:10.9790/1676-0962109115Google ScholarGoogle ScholarCross RefCross Ref
  7. Priyabrat Garanayak, Gayadhar Panda, Pravat K. Ray. 2015. Power system harmonic parameters estimation using ADALINE-VLLMS algorithm. 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth, ICEPE 2015 1-6. https://doi:10.1109/EPETSG.2015.7510132Google ScholarGoogle ScholarCross RefCross Ref
  8. Macias J.A.R. and Exposito A.G. 2006. Self-tuning of Kalman Filters for harmonic computation. IEEE Transactions on Power Delivery, 21, 501-503. https://doi:10.1109/TPWRD.2005.860411Google ScholarGoogle ScholarCross RefCross Ref
  9. M.A. Mostafa. 2007. Kalman Filtering algorithm for electric power quality analysis: harmonics and voltage sags problems. 2007. Large Engineering Systems Conference on Power Engineering,159-165. https://doi:10.1109/LESCPE.2007.4437371Google ScholarGoogle Scholar
  10. R.K. Mallick. 2014. Application of linear Kalman Filter in power quality estimation,” Proceedings of ITR International Conference, 06th April-2014, BhubaneswarGoogle ScholarGoogle Scholar
  11. Haili Ma, Adly A. Girgis. 1996. Identification and tracking of harmonic sources in a power system using a Kalman filter. IEEE Transactions on Power Delivery, 11. https://doi:1659-1665.10.1109/61.517531Google ScholarGoogle Scholar
  12. Pravat K. Ray and Bidyadhar Subudhi. 2012. Ensemble-Kalman-Filter-based power system harmonic estimation. IEEE Transactions on Instrumentation and Measurement, 61, 3216-24. https://doi:10.1109/TIM.2012.2205515Google ScholarGoogle ScholarCross RefCross Ref
  13. Maamar Bettayeb and Uvais Qidwai. 1998. Recursive estimation of power system harmonics. Electric Power Systems Research,47, 143-152. https://doi:10.1016/s0378-7796(98)00063-7Google ScholarGoogle ScholarCross RefCross Ref
  14. Santosh K. Singh, Arup K. Goswami and Nidul Sinha. 2015. Power system harmonic parameter estimation using Bilinear Recursive Least Square (BRLS) algorithm. International Journal of Electrical Power and Energy Systems, 67, 1-10.Google ScholarGoogle ScholarCross RefCross Ref
  15. https://doi:10.1016/j.ijepes.2014.11.006Google ScholarGoogle Scholar
  16. Pravat K. Ray and Bidyadhar Subudhi. 2013. A VLLMS based harmonic estimation of distorted power system signals and hybrid active power filter design. Proceedings of the International Conference on Power Electronics and Drive Systems, 104-108. https://doi:10.1109/PEDS.2013.6526997Google ScholarGoogle Scholar
  17. Hussam M.M. Alhaj, Nursyarizal M. Nor, Vijanth S. Asirvadam and M.F. Abdullah. 2014. Power system harmonics estimation using LMS, LMF and LMS/LMF. 2014 5th International Conference on Intelligent and Advanced Systems: Technological Convergence for Sustainable Future, ICIAS 2014 - Proceedings., 1-5. https://doi:10.1109/ICIAS.2014.6869521Google ScholarGoogle Scholar
  18. Hussam M.M. Alhaj, Nursyarizal M. Nor, Vijanth S. Asirvadam and M.F. Abdullah. 2013. Power system harmonics estimation using sliding window based LMS. IEEE International Conference on Signal and Image Processing Applications. ICSIPA. , 327-332.Google ScholarGoogle Scholar
  19. https://doi:10.1109/ICSIPA.2013.6708027Google ScholarGoogle Scholar
  20. Santosh K. Singh, Nilotpal Sinha, Arup K. Goswami and Nidul Sinha. 2015. Variable constraint based least mean square algorithm for power system harmonic parameter estimation. International Journal of Electrical Power and Energy Systems,73, 218-228.Google ScholarGoogle ScholarCross RefCross Ref
  21. https://doi:10.1016/j.ijepes.2015.04.018Google ScholarGoogle Scholar
  22. Gary W. Chang, Cheng I. Chen and Quan W. Liang. 2009. A two-stage ADALINE for harmonics and interharmonics measurement. IEEE Transactions on Industrial Electronics, 56, 2220-28. https://doi:10.1109/TIE.2009.2017093Google ScholarGoogle ScholarCross RefCross Ref
  23. B.Subudhi and P.K. Ray. 2009. Estimation of power system harmonics using hybrid RLS-Adaline and KF-ADALINE algorithms. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 1-6. https://doi:10.1109/TENCON.2009.5396102Google ScholarGoogle Scholar
  24. M. Joorabian1, S.S. Mortazavi and A.A. Khayyami. 2009. Harmonic estimation in a power system using a novel hybrid least squares- ADALINE algorithm. Electric Power Systems Research, 79, 107-116. https://doi:10.1016/j.epsr.2008.05.021Google ScholarGoogle ScholarCross RefCross Ref
  25. J.A. Chambers, O. Tanrikulu and A. G. Constantinides. 1994. Least mean mixed-norm adaptive filtering. Electron.Electronics Letters, 30, 1574-75. https://doi:10.1049/el:19941060Google ScholarGoogle ScholarCross RefCross Ref
  26. Jonathon Chambers and Apostolos Avlonitis. 1997. A robust mixed-norm adaptive filter algorithm. IEEE Signal Processing Letters, 4, 46-48. https://doi:10.1109/97.554469Google ScholarGoogle ScholarCross RefCross Ref
  27. Wentao Ma, Jiandong Duan, Weishi Man, Junli Liang and Badong Chen. 2017. General mixed norm based diffusion adaptive filtering algorithm for distributed estimation over network. IEEE Access, 5, 1090-1102. https://doi:10.1109/ACCESS.2017.2651144Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    ICDSP '21: Proceedings of the 2021 5th International Conference on Digital Signal Processing
    February 2021
    336 pages
    ISBN:9781450389365
    DOI:10.1145/3458380

    Copyright © 2021 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 23 September 2021

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited
  • Article Metrics

    • Downloads (Last 12 months)4
    • Downloads (Last 6 weeks)0

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format