skip to main content
10.1145/3460238.3460241acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbetConference Proceedingsconference-collections
research-article

Optic Disk and Fovea Localization by Using the Direction of Blood Vessels and Morphology Operation

Published:20 July 2021Publication History

ABSTRACT

This paper presents the optic disk localization by using the matrix that extracted the blood vessels' direction and finding the fovea position using morphology operation in diabetic retinopathy. Our approach begins with blood vessel extraction for locating the optic disk area. Next process, the blood vessel structure was used to estimate the location of the optic disk. Next step, the morphology operator, including erosion and dilation, was used to prepare for attaining the fovea region. Finally, the location of the fovea was estimated by using the position of the optic disk, and specific characteristics of the fovea spot. The proposed method was tested on the DRIVE, DIARETDB0, and DIARETDB1 that is a public diabetic retinal image dataset. The results of the optic disk and fovea localization were compared with the ground truth image. This method can locate optic disk and fovea on DRIVE 100%. In DIARETDB0 and DIARETDB1, this algorithm can achieve optic disk 96.15% and 98.87%, respectively, and locate fovea more than 90%.

Skip Supplemental Material Section

Supplemental Material

References

  1. Aquino, Arturo & Gegundez, Manuel & Marin, Diego. 2010. Detecting the Optic Disc Boundary in Digital Fundus Images Using Morphological, Edge Detection, and Feature Extraction Techniques. IEEE Transactions on Medical Imaging. 29. 1860-9.Google ScholarGoogle ScholarCross RefCross Ref
  2. A. Hendrickson. 2009. Fovea: Primate. Encyclopedia of Neuroscience, Academic Press, 327-334.Google ScholarGoogle Scholar
  3. Isoon Kanjanasurat, Boonchana Purahong, Chuchart Pintavirooj, Nitjaree Satayarak, and Chawalit Benjangkaprasert. (2020). Blood Vessel Extraction and Optic Disk Localization for Diabetic Retinopathy. International Conference on Biomedical Engineering and Technology. ACM, New York, USA, 112-116. DOI:https://doi.org/10.1145/3397391.3397425Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Kanjanasurat, I., Purahong, B., Aoyama, H., Benjangkaprasert, C., Pintavirooj, C. 2020. Personal identification using a delaunay triangle and optic disc retinal vascular pattern International Journal of Innovative Computing, Information and Control, 16(3), 879-897Google ScholarGoogle Scholar
  5. M. Usman Akram and Anam Tariq. 2009. Automated optic disk localization and detection in colored retinal images. International Conference on Frontiers of Information Technology. ACM, New York, USA, 36, 1-5. DOI:https://doi.org/10.1145/1838002.1838042Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. H. Fu, J. Cheng, Y. Xu, D. W. K. Wong, J. Liu and X. Cao. 2018. Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation. Transactions on Medical Imaging, vol. 37, no. 7. 1597-1605. doi: 10.1109/TMI.2018.2791488.Google ScholarGoogle ScholarCross RefCross Ref
  7. Kamrul Hasan, Ashraful Alam, Toufick E Elahi, Shidhartho Roy, Robert Martí. 2020. DRNet: Segmentation and Localization of Optic Disc and Fovea from Diabetic Retinopathy Image, Artificial Intelligence in Medicine.Google ScholarGoogle Scholar
  8. Yijin Huang, Zhiquan Zhong, Jin Yuan, Xiaoying Tang, Efficient and robust optic disc detection and fovea localization using region proposal network and cascaded network, Biomedical Signal Processing and Control, Volume 60, 2020,Google ScholarGoogle ScholarCross RefCross Ref
  9. K. M. Asim, A. Basit and A. Jalil. 2012. Detection and localization of fovea in human retinal fundus images. International Conference on Emerging Technologies, Islamabad.1-5, doi: 10.1109/ICET.2012.6375458.Google ScholarGoogle ScholarCross RefCross Ref
  10. J. J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever and B. V. Ginneken. 2004. Ridge based vessel segmentation in color images of the retina. IEEE Trans. Medical Imaging. 501-509.Google ScholarGoogle ScholarCross RefCross Ref
  11. M. Niemeijer, J. J. Staal, B. V. Ginneken, M. Loog and M. D. Abramoff. 2004. Comparative study of retinal vessel segmentation methods on a new publicly available database, SPIE Medical Imaging. 648-656.Google ScholarGoogle Scholar
  12. T. Kauppi, V. Kalesnykiene, J.-K. Kamarainen, L. Sorri, H. Uusitalo, H. Kalviainen and J. Pietila. 2006. DIARETDB0: Evaluation Database and Methodology for Diabetic Retinopathy Algorithms, Technical Report.Google ScholarGoogle Scholar
  13. T. Kauppi, V. Kalesnykiene, J.-K. Kamarainen, L. Sorri, H. Uusitalo, H. Kalviainen and J. Pietila. 2007. DIARETDB1 diabetic retinopathy database and evaluation protocol, The British Machine Vision Conference.Google ScholarGoogle Scholar
  14. I. Soares, M. Castelo-Branco and A. M. G. Pinheiro. 2016. Optic Disc Localization in Retinal Images Based on Cumulative Sum Fields. Journal of Biomedical and Health Informatics, vol. 20, 2. 574-585. doi: 10.1109/JBHI.2015.2392712.Google ScholarGoogle ScholarCross RefCross Ref
  15. R. Panda, N. B. Puhan and P. Ganapati. 2017. Robust and accurate optic disk localization using vessel symmetry line measure in fundus images. Biocybernetics and Biomedical Engineering. 466-476.Google ScholarGoogle ScholarCross RefCross Ref
  16. S. P. S. Jois, S. Harsha and J. R. H. Kumar. 2018. Automatic optic disc localization using particle swarm optimization technique. TENCON IEEE Region 10 Conference. 1718-1722.Google ScholarGoogle Scholar
  17. Annupan Rodtook and Sirikan Chucherd. 2019. Automated Optic Disc Localization Algorithm by Combining A Blob of Corner Patterns, Brightness and Circular Structures Models. International Conference on Information Technology and Computer Communications. ACM, New York, USA, 6-12. DOI:https://doi.org/10.1145/3355402.3355420Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. X. Guo, H. Wang, X. Lu, X. Hu, S. Che and Y. Lu. 2020. Robust Fovea Localization Based on Symmetry Measure. IEEE Journal of Biomedical and Health Informatics, vol. 24, 8. 2315-2326. doi: 10.1109/JBHI.2020.2971593.Google ScholarGoogle ScholarCross RefCross Ref
  19. R. J. Qureshi, L. Kovacs, B. Harangi, B. Nagy, T. Peto, and A. Hajdu. 2012. Combining algorithms for automatic detection of optic disc and macula in fundus images. Comput. Vision Image Understanding, vol. 116, 1. 138-145.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. E. F. Kao, P. C. Lin, M. C. Chou, T. S. Jaw, and G. C. Liu. 2014. Automated detection of fovea in fundus images based on vessel-free zone and adaptive Gaussian template. Comput. Methods Programs Biomed., vol. 117, 2. 92-103.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. R. J. Chalakkal, W. H. Abdulla, and S. S. Thulaseedharan. 2018. Automatic detection and segmentation of optic disc and fovea in retinal images. IET Image Process., vol. 12,11. 2100-2110.Google ScholarGoogle ScholarCross RefCross Ref
  22. A. M. Syed, M. U. Akram, T. Akram, M. Muzammal, S. Khalid, and M. A. Khan. 2018. Fundus images-based detection and grading of macular edema using robust macula localization. IEEE Access, vol. 6, 784-793Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    ICBET '21: Proceedings of the 2021 11th International Conference on Biomedical Engineering and Technology
    March 2021
    200 pages
    ISBN:9781450387897
    DOI:10.1145/3460238

    Copyright © 2021 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 20 July 2021

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format