skip to main content
10.1145/3460238.3460258acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbetConference Proceedingsconference-collections
research-article

EcoHIV/NDK-NanoLuc, A Fluorescein-Labeled Virus Permits to Investigate HIV-1 Infection in Mice

Authors Info & Claims
Published:20 July 2021Publication History

ABSTRACT

EcoHIV/NDK is a recombinant virus modified from HIV-1 that uses mice as a host. NanoLuc (Nluc) luciferase is a genetically engineered small molecule enzyme (19.1kDa). It is currently the best bioluminescence reporter gene which uses furimazine as a luminescent substrate to produce detectable fluorescence. In order to quantify and locate the levels of EcoHIV/NDK infection and expression, the EcoHIV/NDK plasmid and the Nluc luciferase gene were integrated together to construct EcoHIV/NDK-NanoLuc virus. To verify whether EcoHIV/NDK-NanoLuc is effective in in vivo and in vitro, we conducted the following experiments. First, the existence of the nanoluc fragment in the recombinant plasmid was verified by PCR amplification, and then the correctness of the plasmid construction was verified by restriction enzyme digestion. As a result, the correct recombinant and plasmid were constructed. The Nluc luciferase reporter gene was used to indicate the infection of the successfully packaged virus on Hela-mCAT cells and the three strains of Kunming mice, BALB/c nude mice, and 129S2/SvPasCrl mice, respectively. Our results show that EcoHIV/NDK-NanoLuc can effectively infect Hela-mCAT cells and three strains of mice, in which viral replication site and distribution was detected through the luciferase reporter gene.

References

  1. Gao, F., Bailes, E., Robertson, D. L., Chen, Y., Rodenburg, C. M., Michael, S. F., Cummins, L. B., Arthur, L. O., Peeters, M., Shaw, G. M., Sharp, P. M., & Hahn, B. H. (1999). Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature, 397(6718), 436–441. https://doi.org/10.1038/17130Google ScholarGoogle ScholarCross RefCross Ref
  2. Da L T , Lin M . Opening dynamics of HIV-1 gp120 upon receptor binding is dictated by a key hydrophobic core[J]. Physical Chemistry Chemical Physics, 2019, 21(47).Google ScholarGoogle ScholarCross RefCross Ref
  3. Potash, M. J., Chao, W., Bentsman, G., Paris, N., Saini, M., Nitkiewicz, J., Belem, P., Sharer, L., Brooks, A. I., & Volsky, D. J. (2005). A mouse model for study of systemic HIV-1 infection, antiviral immune responses, and neuroinvasiveness. Proceedings of the National Academy of Sciences of the United States of America, 102(10), 3760–3765. https://doi.org/10.1073/pnas.0500649102Google ScholarGoogle ScholarCross RefCross Ref
  4. Davey, R. A., Hamson, C. A., Healey, J. J., & Cunningham, J. M. (1997). In vitro binding of purified murine ecotropic retrovirus envelope surface protein to its receptor, MCAT-1. Journal of virology, 71(11), 8096–8102. https://doi.org/10.1128/JVI.71.11.8096-8102.1997Google ScholarGoogle ScholarCross RefCross Ref
  5. Devés, R., & Boyd, C. A. (1998). Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiological reviews, 78(2), 487–545. https://doi.org/10.1152/physrev.1998.78.2.487Google ScholarGoogle ScholarCross RefCross Ref
  6. Saylor, D., Dickens, A. M., Sacktor, N., Haughey, N., Slusher, B., Pletnikov, M., Mankowski, J. L., Brown, A., Volsky, D. J., & McArthur, J. C. (2016). HIV-associated neurocognitive disorder - pathogenesis and prospects for treatment. Nature reviews. Neurology, 12(5), 309. https://doi.org/10.1038/nrneurol.2016.53Google ScholarGoogle ScholarCross RefCross Ref
  7. Hadas, E., Chao, W., He, H., Saini, M., Daley, E., Saifuddin, M., Bentsman, G., Ganz, E., Volsky, D. J., & Potash, M. J. (2013). Transmission of chimeric HIV by mating in conventional mice: prevention by pre-exposure antiretroviral therapy and reduced susceptibility during estrus. Disease models & mechanisms, 6(5), 1292–1298. https://doi.org/10.1242/dmm.012617Google ScholarGoogle ScholarCross RefCross Ref
  8. Gorantla, S., Poluektova, L., & Gendelman, H. E. (2012). Rodent models for HIV-associated neurocognitive disorders. Trends in neurosciences, 35(3), 197–208. https://doi.org/10.1016/j.tins.2011.12.006Google ScholarGoogle ScholarCross RefCross Ref
  9. Goffinet, C., Homann, S., Ambiel, I., Tibroni, N., Rupp, D., Keppler, O. T., & Fackler, O. T. (2010). Antagonism of CD317 restriction of human immunodeficiency virus type 1 (HIV-1) particle release and depletion of CD317 are separable activities of HIV-1 Vpu. Journal of virology, 84(8), 4089–4094. https://doi.org/10.1128/JVI.01549-09Google ScholarGoogle ScholarCross RefCross Ref
  10. Jin, S., Tian, S., Luo, M., Xie, W., Liu, T., Duan, T., Wu, Y., & Cui, J. (2017). Tetherin Suppresses Type I Interferon Signaling by Targeting MAVS for NDP52-Mediated Selective Autophagic Degradation in Human Cells. Molecular cell, 68(2), 308–322.e4. https://doi.org/10.1016/j.molcel.2017.09.005Google ScholarGoogle ScholarCross RefCross Ref
  11. Gorantla, S., Makarov, E., Finke-Dwyer, J., Castanedo, A., Holguin, A., Gebhart, C. L., Gendelman, H. E., & Poluektova, L. (2010). Links between progressive HIV-1 infection of humanized mice and viral neuropathogenesis. The American journal of pathology, 177(6), 2938–2949. https://doi.org/10.2353/ajpath.2010.100536Google ScholarGoogle ScholarCross RefCross Ref
  12. Rongvaux, A., Takizawa, H., Strowig, T., Willinger, T., Eynon, E. E., Flavell, R. A., & Manz, M. G. (2013). Human hemato-lymphoid system mice: current use and future potential for medicine. Annual review of immunology, 31, 635–674. https://doi.org/10.1146/annurev-immunol-032712-095921Google ScholarGoogle ScholarCross RefCross Ref
  13. Shipunova V O , Shilova O N , Shramova E I , A Highly Specific Substrate for NanoLUC Luciferase Furimazine Is Toxic in vitro and in vivo[J]. Russian Journal of Bioorganic Chemistry, 2018, 44(2):225-228.Google ScholarGoogle Scholar
  14. Boute, N., Lowe, P., Berger, S., Malissard, M., Robert, A., & Tesar, M. (2016). NanoLuc Luciferase - A Multifunctional Tool for High Throughput Antibody Screening. Frontiers in pharmacology, 7, 27. https://doi.org/10.3389/fphar.2016.00027Google ScholarGoogle ScholarCross RefCross Ref
  15. England, C. G., Ehlerding, E. B., & Cai, W. (2016). NanoLuc: A Small Luciferase Is Brightening Up the Field of Bioluminescence. Bioconjugate chemistry, 27(5), 1175–1187. https://doi.org/10.1021/acs.bioconjchem.6b00112Google ScholarGoogle ScholarCross RefCross Ref
  16. Hadas, E., Borjabad, A., Chao, W., Saini, M., Ichiyama, K., Potash, M. J., & Volsky, D. J. (2007). Testing antiretroviral drug efficacy in conventional mice infected with chimeric HIV-1. AIDS (London, England), 21(8), 905–909. https://doi.org/10.1097/QAD.0b013e3281574549Google ScholarGoogle ScholarCross RefCross Ref
  17. Yoon, V., Fridkis-Hareli, M., Munisamy, S., Lee, J., Anastasiades, D., & Stevceva, L. (2010). The GP120 molecule of HIV-1 and its interaction with T cells. Current medicinal chemistry, 17(8), 741–749. https://doi.org/10.2174/092986710790514499Google ScholarGoogle ScholarCross RefCross Ref
  18. Browning Paul, J., Wang, E. J., Pettoello-Mantovani, M., Raker, C., Yurasov, S., Goldstein, M. M., Horner, J. W., Chan, J., & Goldstein, H. (2000). Mice transgenic for monocyte-tropic HIV type 1 produce infectious virus and display plasma viremia: a new in vivo system for studying the postintegration phase of HIV replication. AIDS research and human retroviruses, 16(5), 481–492. https://doi.org/10.1089/088922200309142Google ScholarGoogle ScholarCross RefCross Ref
  19. He H, Sharer LR, Chao W, Gu CJ, Borjabad A, Hadas E, Kelschenbach J, Ichiyama K, Do M, Potash MJ, Volsky DJ. Enhanced human immunodeficiency virus Type 1 expression and neuropathogenesis in knockout mice lacking Type I interferon responses. J Neuropathol Exp Neurol. 2014 Jan;73(1):59-71. doi: 10.1097/NEN.0000000000000026. PMID: 24335529; PMCID: PMC3871403.Google ScholarGoogle ScholarCross RefCross Ref
  20. Kelschenbach, J. L., Saini, M., Hadas, E., Gu, C. J., Chao, W., Bentsman, G., Hong, J. P., Hanke, T., Sharer, L. R., Potash, M. J., & Volsky, D. J. (2012). Mice chronically infected with chimeric HIV resist peripheral and brain superinfection: a model of protective immunity to HIV. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology, 7(2), 380–387. https://doi.org/10.1007/s11481-011-9316-1Google ScholarGoogle ScholarCross RefCross Ref
  21. Gu, C. J., Borjabad, A., Hadas, E., Kelschenbach, J., Kim, B. H., Chao, W., Arancio, O., Suh, J., Polsky, B., McMillan, J., Edagwa, B., Gendelman, H. E., Potash, M. J., & Volsky, D. J. (2018). EcoHIV infection of mice establishes latent viral reservoirs in T cells and active viral reservoirs in macrophages that are sufficient for induction of neurocognitive impairment. PLoS pathogens, 14(6), e1007061. https://doi.org/10.1371/journal.ppat.1007061Google ScholarGoogle ScholarCross RefCross Ref
  22. Teodorof-Diedrich, C., & Spector, S. A. (2018). Human Immunodeficiency Virus Type 1 gp120 and Tat Induce Mitochondrial Fragmentation and Incomplete Mitophagy in Human Neurons. Journal of virology, 92(22), e00993-18. https://doi.org/10.1128/JVI.00993-18Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    ICBET '21: Proceedings of the 2021 11th International Conference on Biomedical Engineering and Technology
    March 2021
    200 pages
    ISBN:9781450387897
    DOI:10.1145/3460238

    Copyright © 2021 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 20 July 2021

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited
  • Article Metrics

    • Downloads (Last 12 months)22
    • Downloads (Last 6 weeks)1

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format