
RESTest: Automated Black-Box Testing of RESTful Web APIs
Alberto Martin-Lopez

alberto.martin@us.es
SCORE Lab, I3US Institute,
Universidad de Sevilla

Seville, Spain

Sergio Segura
sergiosegura@us.es

SCORE Lab, I3US Institute,
Universidad de Sevilla

Seville, Spain

Antonio Ruiz-Cortés
aruiz@us.es

SCORE Lab, I3US Institute,
Universidad de Sevilla

Seville, Spain

ABSTRACT

Testing RESTful APIs thoroughly is critical due to their key role in 
software integration. Existing tools for the automated generation 
of test cases in this domain have shown great promise, but their 
applicability is limited as they mostly rely on random inputs, i.e., 
fuzzing. In this paper, we present RESTest, an open source black-
box testing framework for RESTful web APIs. Based on the API 
specification, RESTest supports the generation of test cases using 
different testing techniques such as fuzzing and constraint-based 
testing, among others. RESTest is developed as a framework and can 
be easily extended with new test case generators and test writers 
for different programming languages. We evaluate the tool in two 
scenarios: offline and online testing. In the former, we show how 
RESTest can efficiently generate realistic test cases (test inputs and 
test oracles) that uncover bugs in real-world APIs. In the latter, we 
show RESTest’s capabilities as a continuous testing and monitoring 
framework. Demo video: https://youtu.be/1f_tjdkaCKo.

KEYWORDS:

REST,
black-box testing, 
web APIs

1 INTRODUCTION

Web APIs enable the consumption of services and data over the 
network, typically using web services. Modern web APIs generally 
adhere to the REpresentational State Transfer (REST) architectural 
style [16], being referred to as RESTful web APIs. RESTful web 
APIs are usually decomposed into multiple RESTful web services 
[23], each of which implements one or more create, read, update or

delete (CRUD) operations over a specific resource (e.g., a video in
the YouTube API). RESTful APIs are commonly described using lan-
guages such as the OpenAPI Specification (OAS) [4]. OAS provides
a structured description of a RESTful web API that allows both hu-
mans and computers to discover and understand the capabilities of
a service without requiring access to the source code or additional
documentation. The widespread use of RESTful APIs is reflected in
the size of popular API directories such as ProgrammableWeb [7],
currently indexing over 24K APIs.

RESTful APIs have become key for the development and seam-
less integration of heterogeneous systems, therefore their testing
deserves special attention. A faulty API can have a huge impact in
the many applications using it. In recent years, several approaches
and tools have been proposed to automate the testing of RESTful
APIs. When the source code is available, white-box approaches can
be applied [11]. However, this is not often the case for this type of
systems, and so it is necessary to resort to black-box testing tech-
niques. Black-box approaches leverage the API specification (e.g.,
OAS) to automatically derive test cases from it. Essentially, these
approaches exercise the API under test using (pseudo) random test
data, including random and default values [12, 15], input data dic-
tionaries [13], test data generators [18], data observed in previous
responses from the API [26] and malformed inputs [15, 26].

While current approaches show promising results in the auto-
mated detection of bugs, their effectiveness is limited for real-world
APIs which may require input data to be semantically complex or
to satisfy certain input constraints [20]. For instance, the search
operation of the YouTube API [10] imposes a total of 16 constraints
involving 25 out of its 31 parameters. As another example, the op-
eration to create a draft invoice in the PayPal API [5] requires as
input a JSON object composed of more than 200 properties. Stan-
dard fuzzing techniques may not suffice to generate realistic test
inputs that can actually exercise the inner functionality of such
APIs. This is especially critical when resources are limited, and it is
crucial to ensure that every request sent to the API is of some use.

In this paper, we present RESTest,1 a framework for automated
black-box testing of RESTful web APIs. RESTest receives as input
the specification of the API under test in OAS format, and supports
the generation, and optionally execution, of test cases using state-of-
the-art techniques including fuzzing, adaptive random testing and
constraint-based testing. For the generation of input data, RESTest
relies on custom test data generators which automatically generate
realistic data such as email addresses, language codes or strings
matching a regular expression. The test cases can be instantiated
into several frameworks and libraries such as REST Assured [9] and
Postman [6]. Test case generation and execution can be performed

1https://github.com/isa-group/RESTest

https://youtu.be/1f_tjdkaCKo
https://doi.org/10.1145/3460319.3469082
https://doi.org/10.1145/3460319.3469082
https://github.com/isa-group/RESTest


Figure 1: RESTest workflow.

in isolation (offline testing) or they can be interleaved (online test-
ing). Graphical test reports are automatically generated using the
Allure framework [1].

RESTest was firstly introduced as the only tool supporting
constraint-based testing of RESTful APIs [22]. In this work, we
present RESTest as a complete framework which integrates multi-
ple testing techniques beyond constraint-based testing. RESTest is
open source and can be easily extended with new test case genera-
tion strategies, test data generators and test writers.

2 RESTEST OVERVIEW
In what follows, we explain the basic workflow of RESTest, depicted
in Figure 1.

(1) Test model generation. RESTest follows a model-based testing
approach. Two models are used: the system model (i.e., the
API specification), and the so-called test model, consisting
of a configuration file in YAML notation. The test model
contains all test-related configuration settings for the API
under test, and it may be manually augmented to tailor the
testing process, for example, to specify authentication de-
tails (e.g., API keys). The test model also specifies the test
data to be used for each parameter, which may include data
dictionaries or test data generators (e.g., airport or currency
codes).

(2) Abstract test case generation. Test cases are derived from the
system and test models using one or more testing techniques.
These test cases are abstract or platform-independent, mean-
ing that they can be later transformed into executable test
cases for specific testing frameworks and programming lan-
guages.

(3) Test case generation. Abstract test cases are instantiated into
executable test cases using specific testing frameworks and
libraries such as REST Assured [9].

Figure 2: RESTest architecture.

(4) Test case execution. Test cases are optionally executed and
the test results are exported to a machine-readable format
and reported to the user, e.g., in a dashboard, using a test
reporting framework like Allure [1].

(5) Feedback collection. Test generators can react to the test out-
puts to create more sophisticated test cases, for example,
applying search-based techniques in order to maximize the
API coverage [21] (e.g., status codes and response bodies).

3 RESTEST ARCHITECTURE
Figure 2 illustrates the architecture of RESTest. For each main com-
ponent, Figure 2 shows the step of the testing process where it is
involved, as explained in Section 2 and depicted in Figure 1. Next,
we describe the main components of RESTest.

3.1 Test Data Generators
Test data generators in RESTest are automatically configured when
generating the test model (step 1 ), and they generate test inputs
(step 2 ). Testing a RESTful API operation such as GET /books

involves generating values for the available operation parameters,
e.g., isbn and author. Random values are unlikely to return any re-
sult in this case. RESTest automatically generates realistic values for
these parameters following different strategies: (1) extracting values
from knowledge bases like DBpedia [3] (semantic data generator);
(2) reusing values observed in previous API responses (contextual
data generator); or (3) leveraging manually-defined domain-specific
generators (e.g., strings conforming to a regular expression) or data
dictionaries.

3.2 Test Case Generators
Test case generators create test cases (step 2 ) according to dif-
ferent strategies, and they may leverage the feedback provided by
previous executions (step 5 ). In RESTest, a test case represents
a single call to an API operation and a set of assertions in the re-
sponse. Stateful interactions (e.g., creating a resource with a POST
request and then retrieving it with a GET request) can be achieved
by testing multiple operations at the same time. RESTest currently
supports the following test case generation strategies:

• Fuzzing. Test cases are built by assigning random values to
each parameter of the operation under test. It is possible to
create more sophisticated test cases by configuring specific



test data generators for each parameter, instead of using
purely random or malformed inputs.

• Adaptive random testing. Test cases are evenly distributed
within the input space, with the hope of covering more API
functionality and uncovering more failures [14].

• Constraint-based testing. This strategy is applicable to APIs
containing inter-parameter dependencies, which, according
to a recent study [20], account for 85% of industrial APIs. An
inter-parameter dependency is a constraint between two or
more input parameters of an API operation. For example, in
the YouTube API, when searching for videos in high defini-
tion (videoDefinition=‘high’), the parameter type must
be set to ‘video’, otherwise an error is returned. This testing
approach leverages constraint programming solvers to auto-
matically generate requests satisfying the inter-parameter
dependencies present in the API operation [19]. Specifically,
RESTest integrates IDLReasoner,2 an analysis library devel-
oped by the authors.

3.3 Test Case Mutator
The test case mutator enables the creation of new test cases (step
2 ) by applying changes to existing ones (i.e., mutating them).

This is typically done, for example, for transforming nominal test
cases into faulty ones. Nominal test cases test the API under valid
inputs (those conforming to the API specification). Faulty test cases
check how the API handles invalid inputs, i.e., they expect a client
error as a response.

3.4 Test Writers
Test writers transform abstract test cases into platform-specific
ready-to-execute test cases (step 3 ). RESTest currently supports
the generation of executable test cases for the frameworks REST
Assured [9] and Postman [6].

3.5 Test Runners
Test runners allow to automate the whole testing process, i.e., the
generation of test cases (steps 2 and 3 ), their execution (step
4 ) and the collection and reporting of results (step 5 ). RESTest
provides two working modes: offline and online testing. In offline
testing, test case generation and execution are independent tasks.
This has certain benefits. For example, test cases can be generated
once, and then be executed many times as a part of regression
testing. Also, test generation and test execution can be performed on
different machines and at different times. In online testing, test case
generation and execution are interleaved. This enables, for example,
fully autonomous testing of RESTful web APIs, e.g., generating and
executing test cases 24/7.

4 VALIDATION
In what follows, we show the potential of RESTest for offline and
online testing of RESTful APIs.

2https://github.com/isa-group/IDLReasoner

4.1 Offline Testing
In this experiment, we automatically tested three RESTful services
with inter-parameter dependencies [20]. Testing this kind of ser-
vices with random approaches is generally inefficient or simply
infeasible, since randomly generated requests are very unlikely to
satisfy all the input constraints of the service [22]. For every service
under test, we generated 2,000 test cases using the constraint-based
(CBT) and random (RT) test case generators integrated into RESTest.
Then, we counted the number of failures uncovered by each tech-
nique. Failures can occur due to several reasons such as server
errors (5XX status codes) or unexpected client errors (4XX status
codes) in response to valid inputs.

Table 1 provides a summary of the APIs under test and the results,
including API name, operation tested, number of input parameters
(P), number of dependencies (D), number (and percentage) of dif-
ferent parameters involved in at least one dependency (PD), and
number of failures uncovered by each generator, where the CBT
generator clearly outperformed the RT one. This highlights the fact
that fuzzing may not suffice for testing complex APIs thoroughly.
Among other failures, we found 500 status codes, disconformities
with the OAS specification, and incorrect handling of valid and
invalid inputs. For more detailed insights about these and more
experiments, we refer the reader to our previous work [22].

Table 1: Characteristics and failures found in each API.

API Operation P D PD (%) Failures
RT CBT

Stripe Create product 18 6 11 (61%) 0 535
Yelp Search businesses 14 3 7 (50%) 67 161
YouTube Search 31 16 25 (81%) 0 513

4.2 Online Testing
One of the key features of RESTest is that it can be set up to contin-
uously test multiple APIs. The test results can be checked live in a
multi-dashboard graphical user interface (GUI) based on the Allure
test reporting framework [1].

For our second evaluation, we deployed 10 instances of RESTest
in a server and left them continuously testing 15 RESTful services
of 7 APIs: GitHub, Foursquare, Marvel, Stripe, Tumblr, Yelp and
YouTube. We configured the test runners accordingly so that the
quota limitations would never be exceeded (e.g., 1000 requests/hour
in the Tumblr API). After 5 days, RESTest generated more than
90K test cases, 30% of which uncovered failures in all APIs un-
der test. Specifically, the APIs of Foursquare, Marvel, Tumblr and
Yelp exposed 5XX status codes (server errors), while the APIs of
Foursquare, Stripe and YouTube returned 400 status codes (client
errors) in response to valid inputs. We found this was because their
inter-parameter dependencies were not correctly specified in the
documentation (or correctly implemented in the API itself) [22].
In most APIs, mismatches between the API specification (i.e., the
OAS) and the actual implementation were found too.

Figure 3 depicts the GUI3 where the test results can be checked,
3This dashboard is available at http://betty.us.es/restest-showcase-demo.

https://github.com/isa-group/IDLReasoner
http://betty.us.es/restest-showcase-demo


Figure 3: RESTest dashboard to monitor multiple APIs.

including the number of tests run, failures grouped by category
and severity, test suites and timelines, among others.

5 RELATEDWORK
Most black-box approaches for testing RESTful APIs generate test
cases based on the API specification, e.g., in OAS format. For the
generation of test data, they use random and default values [12, 15],
user-defined data dictionaries [13], test data generators [18], data
observed in previous responses from the API [26] and malformed
inputs [15, 26]. RESTest integrates all these test data generation
strategies, and provides an additional technique to extract realistic
test data from knowledge bases like DBpedia [3]. As for the test
oracles, most approaches rely on the absence of 5XX status codes
and the conformance with the OAS specification. RESTest employs
these and more complex oracles, such as checking the status code
based on the input data used [22] (e.g., asserting that a valid request
obtains a successful response).

Regarding white-box testing, Arcuri [11] proposed a search-
based approach, where test cases are generated aiming to maximize
code coverage and fault finding. White-box techniques may lead to
better results than black-box [12], however, they require access to
the source code of the API, which is not always available. Moreover,
white-box techniques complicate online testing and monitoring of
web APIs, which may hinder adoption by potential users.

Several commercial tools exist for the generation of test cases for
RESTful APIs such as Postman [6], REST Assured [9], ReadyAPI [8]
and API Fortress [2]. These tools, nevertheless, offer little automa-
tion and customization degree, as they are mostly intended for the
automated execution of manually written test cases.

6 CONCLUSION AND FUTUREWORK
This paper presents RESTest, an open source framework for auto-
mated black-box testing of RESTful web APIs. RESTest implements
several testing strategies and test data generation techniques, and
can be integrated into continuous integration (CI) setups to contin-
uously test and monitor multiple RESTful services. The framework
can be easily extended with new test data generators, test case
generation techniques and test writers, among others. RESTest has
already proved useful in the automated detection of real-world bugs
in commercial APIs used by millions of users worldwide [22].

In future work, we plan to extend RESTest with more test data
generators and test case generation strategies. In particular, we are

currently integrating search-based techniques for the generation
of test cases optimized towards one or more objectives such as
maximum API coverage [21], minimum test suite size or maximum
inputs’ diversity. We also aim to automate metamorphic testing
of RESTful APIs [25] based on existing metamorphic relation pat-
terns for query-based systems [24]. On the other hand, we intend
to support non-functional testing of RESTful APIs by leveraging
existing specifications such as SLA4OAI [17]. In doing so, we aim
to make RESTest a full-fledged framework for online testing and
monitoring of RESTful APIs.

ACKNOWLEDGMENTS
This work has been partially supported by the European Com-
mission (FEDER) and Junta de Andalucia under projects APOLO
(US-1264651) and EKIPMENT-PLUS (P18-FR-2895), by the Spanish
Government under project HORATIO (RTI2018-101204-B-C21), and
by the FPU scholarship program, granted by the Spanish Ministry
of Education and Vocational Training (FPU17/04077).

REFERENCES
[1] [n.d.]. Allure - Test report framework. http://allure.qatools.ru/ accessed April

2021.
[2] [n.d.]. API Fortress. https://apifortress.com/ accessed April 2021.
[3] [n.d.]. DBpedia. https://www.dbpedia.org/ accessed April 2021.
[4] [n.d.]. OpenAPI Specification. https://www.openapis.org accessed April 2021.
[5] [n.d.]. PayPal API. https://developer.paypal.com/docs/api/ accessed April 2021.
[6] [n.d.]. Postman. https://www.getpostman.com accessed April 2021.
[7] [n.d.]. ProgrammableWeb API Directory. http://www.programmableweb.com/

accessed April 2021.
[8] [n.d.]. ReadyAPI. https://smartbear.com/product/ready-api/overview/ accessed

April 2021.
[9] [n.d.]. REST Assured. http://rest-assured.io accessed April 2021.
[10] [n.d.]. YouTube Data API. https://developers.google.com/youtube/v3/ accessed

April 2021.
[11] Andrea Arcuri. 2019. RESTful API Automated Test Case Generation with Evo-

Master. ACM TOSEM 28, 1 (2019), 1–37.
[12] Andrea Arcuri. 2021. Automated Blackbox and Whitebox Testing of RESTful

APIs With EvoMaster. IEEE Software (2021).
[13] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. RESTler:

Stateful REST API Fuzzing. In ICSE. 748–758.
[14] T. Y. Chen, H. Leung, and I. K. Mak. 2005. Adaptive Random Testing. In ASIAN.

320–329.
[15] Hamza Ed-douibi, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2018. Auto-

matic Generation of Test Cases for REST APIs: A Specification-Based Approach.
In EDOC. 181–190.

[16] Roy Thomas Fielding. 2000. Architectural Styles and the Design of Network-based
Software Architectures. Ph.D. Dissertation.

[17] Antonio Gamez-Diaz, Pablo Fernandez, and Antonio Ruiz-Cortes. 2019. Automat-
ing SLA-Driven API Development with SLA4OAI. In ICSOC. 20–35.

[18] Stefan Karlsson, Adnan Causevic, and Daniel Sundmark. 2020. QuickREST:
Property-based Test Generation of OpenAPI Described RESTful APIs. In ICST.

[19] Alberto Martin-Lopez, Sergio Segura, Carlos Müller, and Antonio Ruiz-Cortés.
2020. Specification and Automated Analysis of Inter-Parameter Dependencies in
Web APIs. IEEE TSC (2020).

[20] AlbertoMartin-Lopez, Sergio Segura, andAntonio Ruiz-Cortés. 2019. ACatalogue
of Inter-Parameter Dependencies in RESTful Web APIs. In ICSOC. 399–414.

[21] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2019. Test Cov-
erage Criteria for RESTful Web APIs. In A-TEST. 15–21.

[22] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2020. RESTest:
Black-Box Constraint-Based Testing of RESTful Web APIs. In ICSOC.

[23] Leonard Richardson, Mike Amundsen, and Sam Ruby. 2013. RESTful Web APIs.
O’Reilly Media, Inc.

[24] Sergio Segura, Amador Durán, Javier Troya, and Antonio Ruiz-Cortés. 2019.
Metamorphic Relation Patterns for Query-Based Systems. In MET. 24–31.

[25] Sergio Segura, José A Parejo, Javier Troya, and Antonio Ruiz-Cortés. 2018. Meta-
morphic Testing of RESTful Web APIs. IEEE TSE 44, 11 (2018), 1083–1099.

[26] Emanuele Viglianisi, Michael Dallago, and Mariano Ceccato. 2020. RestTestGen:
Automated Black-Box Testing of RESTful APIs. In ICST.

http://allure.qatools.ru/
https://apifortress.com/
https://www.dbpedia.org/
https://www.openapis.org
https://developer.paypal.com/docs/api/
https://www.getpostman.com
http://www.programmableweb.com/
https://smartbear.com/product/ready-api/overview/
http://rest-assured.io
https://developers.google.com/youtube/v3/

	Abstract
	1 Introduction
	2 RESTest Overview
	3 RESTest Architecture
	3.1 Test Data Generators
	3.2 Test Case Generators
	3.3 Test Case Mutator
	3.4 Test Writers
	3.5 Test Runners

	4 Validation
	4.1 Offline Testing
	4.2 Online Testing

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

