skip to main content
research-article

Design Guidelines on Deep Learning–based Pedestrian Detection Methods for Supporting Autonomous Vehicles

Published:03 August 2021Publication History
Skip Abstract Section

Abstract

Intelligent transportation systems (ITS) enable transportation participants to communicate with each other by sending and receiving messages, so that they can be aware of their surroundings and facilitate efficient transportation through better decision making. As an important part of ITS, autonomous vehicles can bring massive benefits by reducing traffic accidents. Correspondingly, much effort has been paid to the task of pedestrian detection, which is a fundamental task for supporting autonomous vehicles. With the progress of computational power in recent years, adopting deep learning–based methods has become a trend for improving the performance of pedestrian detection. In this article, we present design guidelines on deep learning–based pedestrian detection methods for supporting autonomous vehicles. First, we will introduce classic backbone models and frameworks, and we will analyze the inherent attributes of pedestrian detection. Then, we will illustrate and analyze representative pedestrian detectors from occlusion handling, multi-scale feature extraction, multi-perspective data utilization, and hard negatives handling these four aspects. Last, we will discuss the developments and trends in this area, followed by some open challenges.

References

  1. 2018. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. In SAE MOBILUS. Retrieved from https://www.sae.org/standards/content/j3016_201806/.Google ScholarGoogle Scholar
  2. 2020. 6 Key Connectivity Requirements of Autonomous Driving. In IEEE Spectrum. Retrieved from https://spectrum.ieee.org/transportation/advanced-cars/6-key-connectivity-requirements-of-autonomous-driving.Google ScholarGoogle Scholar
  3. 2020. New Level 3 Autonomous Vehicles Hitting the Road in 2020. In IEEE Innovation at Work. Retrieved from https://innovationatwork.ieee.org/new-level-3-autonomous-vehicles-hitting-the-road-in-2020/.Google ScholarGoogle Scholar
  4. T. Ahonen, A. Hadid, and M. Pietikainen. 2006. Face description with local binary patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28, 12 (2006), 2037–2041.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. E. Alemneh, S. Senouci, and P. Brunet. 2017. PV-Alert: A fog-based architecture for safeguarding vulnerable road users. In Proc. IEEE GIIS. 9–15.Google ScholarGoogle Scholar
  6. Anelia Angelova, Alex Krizhevsky, Vincent Vanhoucke, Abhijit Ogale, and Dave Ferguson. 2015. Real-time pedestrian detection with deep network cascades. In Proc. BMVC.Google ScholarGoogle ScholarCross RefCross Ref
  7. Felix Assion, Peter Schlicht, Florens Greßner, Wiebke Gunther, Fabian Huger, Nico Schmidt, and Umair Rasheed. 2019. The attack generator: A systematic approach towards constructing adversarial attacks. In Proc. IEEE CVPR Workshops. 1370–1379.Google ScholarGoogle ScholarCross RefCross Ref
  8. S. Baidya, Y. J. Ku, H. Zhao, J. Zhao, and S. Dey. 2020. Vehicular and edge computing for emerging connected and autonomous vehicle applications. In Proc. IEEE DAC. 1–6.Google ScholarGoogle Scholar
  9. Serge Belongie, Jitendra Malik, and Jan Puzicha. 2002. Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 4 (2002), 509–522.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Rodrigo Benenson, Markus Mathias, Radu Timofte, and Luc Van Gool. 2012. Pedestrian detection at 100 frames per second. In Proc. IEEE CVPR. 2903–2910.Google ScholarGoogle ScholarCross RefCross Ref
  11. Azzedine Boukerche, Burak Kantarci, and Cem Kaptan. 2020. Towards ensuring the reliability and dependability of vehicular crowd-sensing data in GPS-less location tracking. Pervas. Mob. Comput. 68 (2020), 101248.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Braun, S. Krebs, F. Flohr, and D. M. Gavrila. 2019. EuroCity persons: A novel benchmark for person detection in traffic scenes. IEEE Trans. Pattern Anal. Mach. Intell. 41, 8 (2019), 1844–1861.Google ScholarGoogle ScholarCross RefCross Ref
  13. Garrick Brazil, Xi Yin, and Xiaoming Liu. 2017. Illuminating pedestrians via simultaneous detection & segmentation. In Proc. IEEE ICCV. 4950–4959.Google ScholarGoogle ScholarCross RefCross Ref
  14. Zhaowei Cai, Quanfu Fan, Rogerio S. Feris, and Nuno Vasconcelos. 2016. A unified multi-scale deep convolutional neural network for fast object detection. In Proc. ECCV. 354–370.Google ScholarGoogle ScholarCross RefCross Ref
  15. Zhaowei Cai, Mohammad Saberian, and Nuno Vasconcelos. 2015. Learning complexity-aware cascades for deep pedestrian detection. In Proc. IEEE ICCV. 3361–3369.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Mingju Chen, Xiaofeng Han, Hua Zhang, Guojun Lin, and M. M. Kamruzzaman. 2019. Quality-guided key frames selection from video stream based on object detection. J. Vis. Commun. Image R. 65 (2019), 102678.Google ScholarGoogle ScholarCross RefCross Ref
  17. Shang-Tse Chen, Cory Cornelius, Jason Martin, and Duen Horng Polo Chau. 2018. Shapeshifter: Robust physical adversarial attack on faster r-cnn object detector. In Proc. ECML PKDD. 52–68.Google ScholarGoogle Scholar
  18. Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2018. Model compression and acceleration for deep neural networks: The principles, progress, and challenges. IEEE Signal Process. Mag. 35, 1 (2018), 126–136.Google ScholarGoogle ScholarCross RefCross Ref
  19. Siew-Kei Lam, Chengju Zhou, and Meiqing Wu. 2019. SSA-CNN: Semantic Self-Attention CNN for Pedestrian Detection. [Online]. Retrieved from http://arxiv.org/abs/1902.09080.Google ScholarGoogle Scholar
  20. Cheng Chi, Shifeng Zhang, Junliang Xing, Zhen Lei, Stan Z. Li, and Xudong Zou. 2020. PedHunter: Occlusion robust pedestrian detector in crowded scenes. In Proc. AAAI. 10639–10646.Google ScholarGoogle ScholarCross RefCross Ref
  21. Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Mach. Learn. 20, 3 (1995), 273–297.Google ScholarGoogle ScholarCross RefCross Ref
  22. N. Dalal and B. Triggs. 2005. Histograms of oriented gradients for human detection. In Proc. IEEE CVPR. 886–893.Google ScholarGoogle Scholar
  23. Arthur Daniel Costea and Sergiu Nedevschi. 2016. Semantic channels for fast pedestrian detection. In Proc. IEEE CVPR. 2360–2368.Google ScholarGoogle ScholarCross RefCross Ref
  24. J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image database. In Proc. IEEE CVPR. 248–255.Google ScholarGoogle ScholarCross RefCross Ref
  25. Piotr Dollár, Ron Appel, Serge Belongie, and Pietro Perona. 2014. Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36, 8 (2014), 1532–1545.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Piotr Dollár, Ron Appel, and Wolf Kienzle. 2012. Crosstalk cascades for frame-rate pedestrian detection. In Proc. ECCV. 645–659.Google ScholarGoogle ScholarCross RefCross Ref
  27. Piotr Dollar, Serge Belongie, and Pietro Perona. 2010. The fastest pedestrian detector in the west. In Proc. BMVC. 68.1–68.11.Google ScholarGoogle ScholarCross RefCross Ref
  28. Piotr Dollár, Zhuowen Tu, Pietro Perona, and Serge Belongie. 2009. Integral channel features. In Proc. BMVC. 244.1–244.11.Google ScholarGoogle ScholarCross RefCross Ref
  29. P. Dollar, C. Wojek, B. Schiele, and P. Perona. 2009. Pedestrian detection: A benchmark. In Proc. IEEE CVPR. 304–311.Google ScholarGoogle Scholar
  30. P. Dollar, C. Wojek, B. Schiele, and P. Perona. 2012. Pedestrian Detection: An evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34, 4 (2012), 743–761.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Fabio Henrique Kiyoiti dos Santos Tanaka and Claus Aranha. 2019. Data Augmentation Using GANs. [Online]. Retrieved from http://arxiv.org/abs/1904.09135.Google ScholarGoogle Scholar
  32. Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi Tian. 2019. Centernet: Keypoint triplets for object detection. In Proc. IEEE ICCV. 6569–6578.Google ScholarGoogle ScholarCross RefCross Ref
  33. A. Ess, B. Leibe, and L. Van Gool. 2007. Depth and appearance for mobile scene analysis. In Proc. IEEE ICCV. 1–8.Google ScholarGoogle Scholar
  34. Pedro Felzenszwalb, David McAllester, and Deva Ramanan. 2008. A discriminatively trained, multiscale, deformable part model. In Proc. IEEE CVPR. 1–8.Google ScholarGoogle ScholarCross RefCross Ref
  35. Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan. 2009. Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32, 9 (2009), 1627–1645.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Yoav Freund and Robert E. Schapire. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. JCSS 55, 1 (1997), 119–139.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan. 2018. Synthetic data augmentation using GAN for improved liver lesion classification. In Proc. IEEE ISBI. 289–293.Google ScholarGoogle Scholar
  38. J. Funke, M. Brown, S. M. Erlien, and J. C. Gerdes. 2017. Collision Avoidance and stabilization for autonomous vehicles in emergency scenarios. IEEE Trans. Control Syst. Technol. 25, 4 (2017), 1204–1216.Google ScholarGoogle ScholarCross RefCross Ref
  39. A. Geiger, P. Lenz, and R. Urtasun. 2012. Are we ready for autonomous driving? The KITTI vision benchmark suite. In Proc. IEEE CVPR. 3354–3361.Google ScholarGoogle Scholar
  40. Ross Girshick. 2015. Fast R-CNN. In Proc. IEEE ICCV. 1440–1448.Google ScholarGoogle Scholar
  41. Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. IEEE CVPR. 580–587.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Marc Green. 2000. “How long does it take to stop?” Methodological Analysis of Driver Perception-Brake Times. Transp. Hum. Factors 2, 3 (2000), 195–216.Google ScholarGoogle ScholarCross RefCross Ref
  43. X. Guo, Y. Li, and H. Ling. 2017. LIME: Low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26, 2 (2017), 982–993.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Rajesh Gupta, Sudeep Tanwar, Neeraj Kumar, and Sudhanshu Tyagi. 2020. Blockchain-based security attack resilience schemes for autonomous vehicles in industry 4.0: A systematic review. Comput. Electr. Eng. 86 (2020), 106717.Google ScholarGoogle ScholarCross RefCross Ref
  45. Hangil Choi, S. Kim, Kihong Park, and K. Sohn. 2016. Multi-spectral pedestrian detection based on accumulated object proposal with fully convolutional networks. In Proc. IEEE ICPR. 621–626.Google ScholarGoogle Scholar
  46. Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. 2014. Simultaneous detection and segmentation. In Proc. ECCV. 297–312.Google ScholarGoogle ScholarCross RefCross Ref
  47. Irtiza Hasan, Shengcai Liao, Jinpeng Li, Saad Ullah Akram, and Ling Shao. 2020. Pedestrian Detection: The Elephant In The Room. [Online]. Retrieved from https://arxiv.org/abs/2003.08799.Google ScholarGoogle Scholar
  48. A. Hbaieb, J. Rezgui, and L. Chaari. 2019. Pedestrian Detection for autonomous driving within cooperative communication system. In Proc. IEEE WCNC. 1–6.Google ScholarGoogle Scholar
  49. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 9 (2015), 1904–1916.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proc. IEEE CVPR. 770–778.Google ScholarGoogle ScholarCross RefCross Ref
  51. Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. 2006. A fast learning algorithm for deep belief nets. Neural Comput. 18, 7 (2006), 1527–1554.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Mazin Hnewa and Hayder Radha. 2020. Rain-adaptive intensity-driven object detection for autonomous vehicles. In Proc. SAE WCX.Google ScholarGoogle ScholarCross RefCross Ref
  53. Jan Hosang, Mohamed Omran, Rodrigo Benenson, and Bernt Schiele. 2015. Taking a deeper look at pedestrians. In Proc. IEEE CVPR. 4073–4082.Google ScholarGoogle ScholarCross RefCross Ref
  54. Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. [Online]. Retrieved from http://arxiv.org/abs/1704.04861.Google ScholarGoogle Scholar
  55. Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks. In Proc. IEEE CVPR. 7132–7141.Google ScholarGoogle ScholarCross RefCross Ref
  56. Shengyuan Hu, Tao Yu, Chuan Guo, Wei-Lun Chao, and Kilian Q. Weinberger. 2019. A new defense against adversarial images: Turning a weakness into a strength. In Proc. NIPS. 1635–1646.Google ScholarGoogle Scholar
  57. Xiaowei Hu, Chi-Wing Fu, Lei Zhu, and Pheng-Ann Heng. 2019. Depth-attentional features for single-image rain removal. In Proc. IEEE CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  58. Qiangui Huang, Kevin Zhou, Suya You, and Ulrich Neumann. 2018. Learning to prune filters in convolutional neural networks. In Proc. IEEE WACV. 709–718.Google ScholarGoogle ScholarCross RefCross Ref
  59. Soonmin Hwang, Jaesik Park, Namil Kim, Yukyung Choi, and In So Kweon. 2015. Multispectral pedestrian detection: Benchmark dataset and baselines. In Proc. IEEE CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  60. Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size. [Online]. Retrieved from http://arxiv.org/abs/1602.07360.Google ScholarGoogle Scholar
  61. Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proc. ICML. 448–456.Google ScholarGoogle Scholar
  62. Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. 2015. Spatial transformer networks. In Proc. NIPS. 2017–2025.Google ScholarGoogle Scholar
  63. Steve T. K. Jan, Joseph Messou, Yen-Chen Lin, Jia-Bin Huang, and Gang Wang. 2019. Connecting the digital and physical world: Improving the robustness of adversarial attacks. In Proc. AAAI, Vol. 33. 962–969.Google ScholarGoogle ScholarCross RefCross Ref
  64. I. Jegham and A. Ben Khalifa. 2017. Pedestrian detection in poor weather conditions using moving camera. In Proc. IEEE AICCSA. 358–362.Google ScholarGoogle Scholar
  65. Xiaoheng Jiang, Yanwei Pang, Xuelong Li, and Jing Pan. 2016. Speed up deep neural network based pedestrian detection by sharing features across multi-scale models. Neurocomputing 185 (2016), 163–170.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Shu Wang Jingjing Liu, Shaoting Zhang and Dimitris Metaxas. 2016. Multispectral deep neural networks for pedestrian detection. In Proc. BMVC. 73.1–73.13.Google ScholarGoogle Scholar
  67. S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi. 2018. Autoware on Board: Enabling autonomous vehicles with embedded systems. In Proc. IEEE ICCPS.Google ScholarGoogle Scholar
  68. Kaveh Bakhsh Kelarestaghi, Mahsa Foruhandeh, Kevin Heaslip, and Ryan Gerdes. 2019. Survey on vehicular ad hoc networks and its access technologies security vulnerabilities and countermeasures. [Online]. Retrieved from http://arxiv.org/abs/1903.01541.Google ScholarGoogle Scholar
  69. Jong Hyun Kim, Ganbayar Batchuluun, and Kang Ryoung Park. 2018. Pedestrian detection based on faster R-CNN in nighttime by fusing deep convolutional features of successive images. Expert Syst. Appl. 114 (2018), 15–33.Google ScholarGoogle ScholarCross RefCross Ref
  70. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Proc. NIPS. 1097–1105.Google ScholarGoogle Scholar
  71. S. S. S. Kruthiventi, P. Sahay, and R. Biswal. 2017. Low-light pedestrian detection from RGB images using multi-modal knowledge distillation. In Proc. IEEE ICIP. 4207–4211.Google ScholarGoogle Scholar
  72. M. Kutila, P. Pyykonen, H. Holzhuter, M. Colomb, and P. Duthon. 2018. Automotive LiDAR performance verification in fog and rain. In Proc. IEEE ITSC. 1695–1701.Google ScholarGoogle Scholar
  73. Hei Law and Jia Deng. 2018. CornerNet: Detecting objects as paired keypoints. In Proc. ECCV. 734–750.Google ScholarGoogle ScholarCross RefCross Ref
  74. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324.Google ScholarGoogle ScholarCross RefCross Ref
  75. J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun. 2011. Towards fully autonomous driving: Systems and algorithms. In IEEE IV. 163–168.Google ScholarGoogle Scholar
  76. Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. 2019. Certified adversarial robustness with additive noise. In Proc. NIPS. 9464–9474.Google ScholarGoogle Scholar
  77. G. Li, Y. Yang, and X. Qu. 2019. Deep learning approaches on pedestrian detection in hazy weather. IEEE Trans. Ind. Electron. (2019), 1–1. Early Access.Google ScholarGoogle Scholar
  78. Jianan Li, Xiaodan Liang, ShengMei Shen, Tingfa Xu, Jiashi Feng, and Shuicheng Yan. 2017. Scale-aware fast R-CNN for pedestrian detection. IEEE Trans. Multimedia 20, 4 (2017), 985–996.Google ScholarGoogle Scholar
  79. Junwei Liang, Lu Jiang, and Alexander Hauptmann. 2020. SimAug: Learning Robust Representations from Simulation for Trajectory Prediction. [Online]. Retrieved from https://arxiv.org/abs/2004.02022.Google ScholarGoogle Scholar
  80. Chunze Lin, Jiwen Lu, Gang Wang, and Jie Zhou. 2018. Graininess-aware deep feature learning for pedestrian detection. In Proc. ECCV. 732–747.Google ScholarGoogle ScholarCross RefCross Ref
  81. Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E. Haque, Lingjia Tang, and Jason Mars. 2018. The Architectural implications of autonomous driving: Constraints and acceleration. SIGPLAN Not. 53, 2 (2018), 751–766.Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. 2017. Feature pyramid networks for object detection. In Proc. IEEE CVPR. 2117–2125.Google ScholarGoogle ScholarCross RefCross Ref
  83. Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. 2017. Focal loss for dense object detection. In Proc. IEEE ICCV. 2980–2988.Google ScholarGoogle ScholarCross RefCross Ref
  84. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common objects in context. In Proc. ECCV. 740–755.Google ScholarGoogle Scholar
  85. Songtao Liu, Di Huang, and Yunhong Wang. 2019. Adaptive NMS: Refining pedestrian detection in a crowd. In Proc. IEEE CVPR. 6459–6468.Google ScholarGoogle ScholarCross RefCross Ref
  86. Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C. Berg. 2016. SSD: Single shot multibox detector. In Proc. ECCV. 21–37.Google ScholarGoogle Scholar
  87. Wei Liu, Shengcai Liao, Weidong Hu, Xuezhi Liang, and Xiao Chen. 2018. Learning efficient single-stage pedestrian detectors by asymptotic localization fitting. In Proc. ECCV. 618–634.Google ScholarGoogle ScholarCross RefCross Ref
  88. Wei Liu, Shengcai Liao, Weiqiang Ren, Weidong Hu, and Yinan Yu. 2019. High-level semantic feature detection: A new perspective for pedestrian detection. In Proc. IEEE CVPR. 5187–5196.Google ScholarGoogle ScholarCross RefCross Ref
  89. Ping Luo, Yonglong Tian, Xiaogang Wang, and Xiaoou Tang. 2014. Switchable deep network for pedestrian detection. In Proc. IEEE CVPR. 899–906.Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Abdelhamid Mammeri and Azzedine Boukerche. 2017. Inter-vehicle communication of warning information: an experimental study. Wireless Netw. 23, 6 (2017), 1837–1848.Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Ignacio Martinez-Alpiste, Gelayol Golcarenarenji, Qi Wang, and Jose Maria Alcaraz-Calero. 2020. Real-time low-pixel infrared human detection from unmanned aerial vehicles. In Proc. DIVANet. 9–15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. S. K. Maurya and A. Choudhary. 2018. Deep learning–based vulnerable road user detection and collision avoidance. In Proc. IEEE ICVES. 1–6.Google ScholarGoogle Scholar
  93. Tsubasa Minematsu, Hideaki Uchiyama, Atsushi Shimada, Hajime Nagahara, and Rin-ichiro Taniguchi. 2017. Adaptive background model registration for moving cameras. Pattern Recogn. Lett. 96, C (2017), 86–95.Google ScholarGoogle Scholar
  94. Vinod Nair and Geoffrey E. Hinton. 2010. Rectified linear units improve restricted boltzmann machines. In Proc. ICML. 807–814.Google ScholarGoogle Scholar
  95. Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. 2015. Learning deconvolution network for semantic segmentation. In Proc. IEEE ICCV. 1520–1528.Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Junhyug Noh, Soochan Lee, Beomsu Kim, and Gunhee Kim. 2018. Improving occlusion and hard negative handling for single-stage pedestrian detectors. In Proc. IEEE CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  97. Junhyug Noh, Soochan Lee, Beomsu Kim, and Gunhee Kim. 2018. Improving occlusion and hard negative handling for single-stage pedestrian detectors. In Proc. IEEE CVPR. 966–974.Google ScholarGoogle ScholarCross RefCross Ref
  98. Nvidia. [n.d.]. NVIDIA DRIVE AGX PEGASUS. [Online]. Retrieved from https://www.nvidia.com/en-us/self-driving-cars/drive-platform/hardware/.Google ScholarGoogle Scholar
  99. Nvidia. [n.d.]. NVIDIA DRIVE SIM AND DRIVE CONSTELLATION. [Online]. Retrieved from https://www.nvidia.com/en-us/self-driving-cars/drive-constellation/.Google ScholarGoogle Scholar
  100. W. Ouyang and X. Wang. 2012. A discriminative deep model for pedestrian detection with occlusion handling. In Proc. IEEE CVPR. 3258–3265.Google ScholarGoogle Scholar
  101. Wanli Ouyang and Xiaogang Wang. 2013. Joint deep learning for pedestrian detection. In Proc. IEEE ICCV. 2056–2063.Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Wanli Ouyang and Xiaogang Wang. 2013. Single-pedestrian detection aided by multi-pedestrian detection. In Proc. IEEE CVPR. 3198–3205.Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Wanli Ouyang, Xingyu Zeng, and Xiaogang Wang. 2013. Modeling mutual visibility relationship in pedestrian detection. In Proc. IEEE CVPR. 3222–3229.Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. W. Ouyang, H. Zhou, H. Li, Q. Li, J. Yan, and X. Wang. 2018. Jointly learning deep features, deformable parts, occlusion and classification for pedestrian detection. IEEE Trans. Pattern Anal. Mach. Intell. 40, 8 (2018), 1874–1887.Google ScholarGoogle ScholarCross RefCross Ref
  105. Sakrapee Paisitkriangkrai, Chunhua Shen, and Anton Van Den Hengel. 2014. Strengthening the effectiveness of pedestrian detection with spatially pooled features. In Proc. ECCV. 546–561.Google ScholarGoogle ScholarCross RefCross Ref
  106. A. Palffy, J. F. P. Kooij, and D. M. Gavrila. 2019. Occlusion aware sensor fusion for early crossing pedestrian detection. In Proc. IEEE IV. 1768–1774.Google ScholarGoogle Scholar
  107. Yanwei Pang, Jin Xie, Muhammad Haris Khan, Rao Muhammad Anwer, Fahad Shahbaz Khan, and Ling Shao. 2019. Mask-guided attention network for occluded pedestrian detection. In Proc. IEEE ICCV. 4967–4975.Google ScholarGoogle ScholarCross RefCross Ref
  108. C. P. Papageorgiou, M. Oren, and T. Poggio. 1998. A general framework for object detection. In Proc. IEEE ICCV. 555–562.Google ScholarGoogle Scholar
  109. Constantine P. Papageorgiou, Michael Oren, and Tomaso Poggio. 1998. A general framework for object detection. In Proc. IEEE ICCV. 555–562.Google ScholarGoogle ScholarCross RefCross Ref
  110. Dennis Park, C. Lawrence Zitnick, Deva Ramanan, and Piotr Dollár. 2013. Exploring weak stabilization for motion feature extraction. In Proc. IEEE CVPR. 2882–2889.Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Joel Pereira, Cristiano Premebida, Alireza Asvadi, F. Cannata, Luis Garrote, and U. J. Nunes. 2019. Test and evaluation of connected and autonomous vehicles in real-world scenarios. In Proc. IEEE IV. 14–19.Google ScholarGoogle Scholar
  112. J. Redmon and A. Farhadi. 2017. YOLO9000: Better, faster, stronger. In Proc. IEEE CVPR. 6517–6525.Google ScholarGoogle Scholar
  113. Kui Ren, Tianhang Zheng, Zhan Qin, and Xue Liu. 2020. Adversarial attacks and defenses in deep learning. Engineering 6, 3 (2020), 346–360.Google ScholarGoogle ScholarCross RefCross Ref
  114. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proc. NIPS. 91–99.Google ScholarGoogle Scholar
  115. Dominik Scherer, Andreas Müller, and Sven Behnke. 2010. Evaluation of pooling operations in convolutional architectures for object recognition. In Proc. ICANN. 92–101.Google ScholarGoogle ScholarCross RefCross Ref
  116. M. Sha and A. Boukerche. 2020. Semantic fusion-based pedestrian detection for supporting autonomous vehicles. In Proc. IEEE ISCC. 618–623.Google ScholarGoogle Scholar
  117. Weijing Shi, Mohamed Baker Alawieh, Xin Li, and Huafeng Yu. 2017. Algorithm and hardware implementation for visual perception system in autonomous vehicle: A survey. Integration 59 (2017), 148–156.Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. 2016. Training region-based object detectors with online hard example mining. In Proc. IEEE CVPR. 761–769.Google ScholarGoogle ScholarCross RefCross Ref
  119. Abdul Jabbar Siddiqui and Azzedine Boukerche. 2020. Adversarial patches-based attacks on automated vehicle make and model recognition systems. In Proc. Q2SWinet. 115–121.Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for large-scale image recognition. [Online]. Retrieved from http://arxiv.org/abs/1409.1556. In Proc. ICLR.Google ScholarGoogle Scholar
  121. Tao Song, Leiyu Sun, Di Xie, Haiming Sun, and Shiliang Pu. 2018. Small-scale pedestrian detection based on topological line localization and temporal feature aggregation. In Proc. ECCV. 536–551.Google ScholarGoogle ScholarCross RefCross Ref
  122. Jack Stewart. [n.d.]. Self-Driving Cars Use Crazy Amounts of Power, and It’s Becoming a Problem. [Online]. Retrieved from https://www.wired.com/story/self-driving-cars-power-consumption-nvidia-chip/.Google ScholarGoogle Scholar
  123. Peng Sun, Noura AlJeri, and Azzedine Boukerche. 2020. An energy-efficient proactive handover scheme for vehicular networks based on passive RSU detection. IEEE Trans. Sustain. Comput. 5, 1 (2020), 37–47.Google ScholarGoogle ScholarCross RefCross Ref
  124. Siyu Tang, Mykhaylo Andriluka, and Bernt Schiele. 2014. Detection and tracking of occluded people. Int. J. Comput. Vis. 110, 1 (2014), 58–69.Google ScholarGoogle ScholarCross RefCross Ref
  125. Yonglong Tian, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep learning strong parts for pedestrian detection. In Proc. IEEE ICCV. 1904–1912.Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. Yonglong Tian, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Pedestrian detection aided by deep learning semantic tasks. In Proc. IEEE CVPR. 5079–5087.Google ScholarGoogle ScholarCross RefCross Ref
  127. Cosmin Toca, Mihai Ciuc, and Carmen Patrascu. 2015. Normalized autobinomial Markov channels for pedestrian detection. In Proc. BMVC. 175.1–175.13.Google ScholarGoogle Scholar
  128. Alexander Toshev and Christian Szegedy. 2014. DeepPose: Human pose estimation via deep neural networks. In Proc. IEEE CVPR.Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. Jasper R. R. Uijlings, Koen E. A. Van De Sande, Theo Gevers, and Arnold W. M. Smeulders. 2013. Selective search for object recognition. Int. J. Comput. Vision 104, 2 (2013), 154–171.Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. Jessica Van Brummelen, Marie O’Brien, Dominique Gruyer, and Homayoun Najjaran. 2018. Autonomous vehicle perception: The technology of today and tomorrow. Trans. Res. Part C Emerg. Technol. 89 (2018), 384–406.Google ScholarGoogle ScholarCross RefCross Ref
  131. Jaycil Z. Varghese, Randy G. Boone, et al. 2015. Overview of autonomous vehicle sensors and systems. In Proc. IEOM. 178–191.Google ScholarGoogle Scholar
  132. Paul Viola and Michael J. Jones. 2004. Robust real-time face detection. Int. J. Comput. Vis 57, 2 (2004), 137–154.Google ScholarGoogle ScholarDigital LibraryDigital Library
  133. Tuan-Hung Vu, Anton Osokin, and Ivan Laptev. 2015. Context-aware CNNs for person head detection. In Proc. IEEE ICCV. 2893–2901.Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. Heng Wang, Bin Wang, Bingbing Liu, Xiaoli Meng, and Guanghong Yang. 2017. Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle. Rob. Auton. Syst. 88 (2017), 71–78.Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. Shiguang Wang, Jian Cheng, Haijun Liu, Feng Wang, and Hui Zhou. 2018. Pedestrian detection via body part semantic and contextual information with DNN. IEEE Trans. Multimedia 20, 11 (2018), 3148–3159.Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. Tianyu Wang, Xin Yang, Ke Xu, Shaozhe Chen, Qiang Zhang, and Rynson W. H. Lau. 2019. Spatial attentive single-image deraining with a high quality real rain dataset. In Proc. IEEE CVPR.Google ScholarGoogle Scholar
  137. Xiaoyu Wang, Tony X. Han, and Shuicheng Yan. 2009. An HOG-LBP human detector with partial occlusion handling. In Proc. IEEE ICCV. 32–39.Google ScholarGoogle ScholarCross RefCross Ref
  138. Xiaolong Wang, Abhinav Shrivastava, and Abhinav Gupta. 2017. A-fast-rcnn: Hard positive generation via adversary for object detection. In Proc. IEEE CVPR. 2606–2615.Google ScholarGoogle ScholarCross RefCross Ref
  139. Xinlong Wang, Tete Xiao, Yuning Jiang, Shuai Shao, Jian Sun, and Chunhua Shen. 2018. Repulsion loss: Detecting pedestrians in a crowd. In Proc. IEEE CVPR. 7774–7783.Google ScholarGoogle ScholarCross RefCross Ref
  140. Christian Wojek and Bernt Schiele. 2008. A performance evaluation of single and multi-feature people detection. In Proc. JPRS. 82–91.Google ScholarGoogle ScholarDigital LibraryDigital Library
  141. Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. 2018. Cbam: Convolutional block attention module. In Proc. ECCV. 3–19.Google ScholarGoogle ScholarCross RefCross Ref
  142. Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan Yuille. 2017. Adversarial examples for semantic segmentation and object detection. In Proc. IEEE ICCV. 1369–1378.Google ScholarGoogle ScholarCross RefCross Ref
  143. H. Xiong, F. B. Flohr, S. Wang, B. Wang, J. Wang, and K. Li. 2019. Recurrent neural network architectures for vulnerable road user trajectory prediction. In Proc. IEEE IV. 171–178.Google ScholarGoogle Scholar
  144. Bin Yang, Junjie Yan, Zhen Lei, and Stan Z. Li. 2015. Convolutional channel features. In Proc. IEEE ICCV. 82–90.Google ScholarGoogle Scholar
  145. S. Zang, M. Ding, D. Smith, P. Tyler, T. Rakotoarivelo, and M. A. Kaafar. 2019. The impact of adverse weather conditions on autonomous vehicles: How rain, snow, fog, and hail affect the performance of a self-driving car. IEEE Veh. Technol. Mag. 14, 2 (2019), 103–111.Google ScholarGoogle ScholarCross RefCross Ref
  146. He Zhang and Vishal M. Patel. 2018. Densely connected pyramid dehazing network. In Proc. IEEE CVPR.Google ScholarGoogle Scholar
  147. Jialiang Zhang, Lixiang Lin, Yun-chen Chen, Yao Hu, Steven C. H. Hoi, and Jianke Zhu. 2019. CSID: Center, Scale, Identity and Density-aware Pedestrian Detectionin a Crowd. [Online]. Retrieved from https://arxiv.org/abs/1910.09188.Google ScholarGoogle Scholar
  148. Liliang Zhang, Liang Lin, Xiaodan Liang, and Kaiming He. 2016. Is faster r-cnn doing well for pedestrian detection? In Proc. ECCV. 443–457.Google ScholarGoogle ScholarCross RefCross Ref
  149. Shanshan Zhang, Christian Bauckhage, and Armin B. Cremers. 2014. Informed haar-like features improve pedestrian detection. In Proc. IEEE CVPR.Google ScholarGoogle Scholar
  150. Shanshan Zhang, Rodrigo Benenson, Mohamed Omran, Jan Hosang, and Bernt Schiele. 2016. How far are we from solving pedestrian detection? In Proc. IEEE CVPR. 1259–1267.Google ScholarGoogle ScholarCross RefCross Ref
  151. S. Zhang, R. Benenson, and B. Schiele. 2017. CityPersons: A diverse dataset for pedestrian detection. In Proc. IEEE CVPR. 4457–4465.Google ScholarGoogle Scholar
  152. Shanshan Zhang, Rodrigo Benenson, Bernt Schiele, et al. 2015. Filtered channel features for pedestrian detection. In Proc. IEEE CVPR. 1751–1760.Google ScholarGoogle ScholarCross RefCross Ref
  153. Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, and Stan Z. Li. 2018. Occlusion-aware R-CNN: Detecting pedestrians in a crowd. In Proc. ECCV. 637–653.Google ScholarGoogle Scholar
  154. Shanshan Zhang, Jian Yang, and Bernt Schiele. 2018. Occluded pedestrian detection through guided attention in CNNs. In Proc. IEEE CVPR. 6995–7003.Google ScholarGoogle ScholarCross RefCross Ref
  155. Xiaowei Zhang, Li Cheng, Bo Li, and Hai-Miao Hu. 2018. Too far to see? Not really!–pedestrian detection with scale-aware localization policy. IEEE Trans. Image Process. 27, 8 (2018), 3703–3715.Google ScholarGoogle ScholarCross RefCross Ref
  156. Zhen Jia, A. Balasuriya, and S. Challa. 2006. Recent developments in vision based target tracking for autonomous vehicles navigation. In Proc. IEEE Trans. Intell. Transp. Syst.765–770.Google ScholarGoogle Scholar
  157. Chunluan Zhou and Junsong Yuan. 2017. Multi-label learning of part detectors for heavily occluded pedestrian detection. In Proc. IEEE ICCV. 3486–3495.Google ScholarGoogle ScholarCross RefCross Ref
  158. Chunluan Zhou and Junsong Yuan. 2018. Bi-box regression for pedestrian detection and occlusion estimation. In Proc. ECCV. 135–151.Google ScholarGoogle ScholarCross RefCross Ref
  159. Yousong Zhu, Jinqiao Wang, Chaoyang Zhao, Haiyun Guo, and Hanqing Lu. 2016. Scale-adaptive deconvolutional regression network for pedestrian detection. In Proc. ACCV. 416–430.Google ScholarGoogle Scholar

Index Terms

  1. Design Guidelines on Deep Learning–based Pedestrian Detection Methods for Supporting Autonomous Vehicles

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 54, Issue 6
          Invited Tutorial
          July 2022
          799 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/3475936
          Issue’s Table of Contents

          Copyright © 2021 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 3 August 2021
          • Accepted: 1 April 2021
          • Revised: 1 December 2020
          • Received: 1 March 2020
          Published in csur Volume 54, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format