skip to main content
Skip header Section
Event Mining for Explanatory ModelingMay 2021
  • Authors:
  • Laleh Jalali,
  • Ramesh Jain
Publisher:
  • Association for Computing Machinery
  • New York
  • NY
  • United States
ISBN:978-1-4503-8482-7
Published:20 May 2021
Pages:
162
Appears In:
ACMACM Books
Skip Bibliometrics Section
Reflects downloads up to 12 Feb 2025Bibliometrics
Skip Abstract Section
Abstract

This book introduces the concept of Event Mining for building explanatory models from analyses of correlated data. Such a model may be used as the basis for predictions and corrective actions. The idea is to create, via an iterative process, a model that explains causal relationships in the form of structural and temporal patterns in the data. The first phase is the data-driven process of hypothesis formation, requiring the analysis of large amounts of data to find strong candidate hypotheses. The second phase is hypothesis testing, wherein a domain expert’s knowledge and judgment is used to test and modify the candidate hypotheses.

The book is intended as a primer on Event Mining for data-enthusiasts and information professionals interested in employing these event-based data analysis techniques in diverse applications. The reader is introduced to frameworks for temporal knowledge representation and reasoning, as well as temporal data mining and pattern discovery. Also discussed are the design principles of event mining systems. The approach is reified by the presentation of an event mining system called EventMiner, a computational framework for building explanatory models. The book contains case studies of using EventMiner in asthma risk management and an architecture for the objective self. The text can be used by researchers interested in harnessing the value of heterogeneous big data for designing explanatory event-based models in diverse application areas such as healthcare, biological data analytics, predictive maintenance of systems, computer networks, and business intelligence.

References

  1. R. Agarwal and R. Srikant. 1994. Fast algorithms for mining association rules. In Proceedings of the 20th VLDB Conference. 487–499. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. R. Agrawal and R. Srikant. 1995. Mining sequential patterns. In Data Engineering, 1995. Proceedings of the Eleventh International Conference on. 3–14. IEEE. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. R. Agrawal, C. Faloutsos, and A. Swami. 1993a. Efficient Similarity Search in Sequence Databases. Springer. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. R. Agrawal, T. Imieliński, and A. Swami. 1993b. Mining association rules between sets of items in large databases. ACM SIGMOD Rec. 22, 2, 207–216. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. W. Aigner and S. Miksch. 2006. CareVis: Integrated visualization of computerized protocols and temporal patient data. Artif. Intell. Med. 37, 3, 203–218. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. J. F. Allen. 1981. An interval-based representation of temporal knowledge. In IJCAI. 81, 221–226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 3, 403–410. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  8. R. V. Ammon, C. Emmersberger, F. Springer, and C. Wolff. 2008. Event-driven business process management and its practical application taking the example of DHL.Google ScholarGoogle Scholar
  9. K. Amphawan, P. Lenca, and A. Surarerks. 2009. Mining top-k periodic-frequent pattern from transactional databases without support threshold. In B. Papasratorn, W. Chutimaskul, K. Porkaew, and V. Vanijja (Eds.), Advances in Information Technology: Third International Conference, IAIT 2009, Bangkok, Thailand, December 1–5, 2009. Proceedings. 18–29. Springer, Berlin. ISBN 978-3-642-10392-6. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  10. G. Androulidakis, V. Chatzigiannakis, and S. Papavassiliou. 2009. Network anomaly detection and classification via opportunistic sampling. IEEE Netw. 23, 1, 6–12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. W. G. Aref, M. G. Elfeky, and A. K. Elmagarmid. 2004. Incremental, online, and merge mining of partial periodic patterns in time-series databases. IEEE Trans. Knowl. Data Eng. 16, 3, 332–342. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. 2002. Sequential pattern mining using a bitmap representation. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 429–435. ACM. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. 2002. Models and issues in data stream systems. In Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 1–16. ACM. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. W. D. Bae, S. Alkobaisi, S. Narayanappa, and C. C. Liu. 2012. A mobile data analysis framework for environmental health decision support. In Information Technology: New Generations (ITNG), 2012 Ninth International Conference on. 155–161. IEEE. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. T. L. Bailey and C. Elkan. 1994. Fitting a mixture model by expectation maximization to discover motifs in bipolymers. Proceedings of International Conference on Intelligent Systems for Molecular Biology. 28–36.Google ScholarGoogle Scholar
  16. M. Baptista, S. Sankararaman, I. P. de Medeiros, C. Nascimento Jr, H. Prendinger, and E. M. Henriques. 2018. Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling. Comput. Ind. Eng. 115, 41–53. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  17. E. Ben-Chetrit, C. Chen-Shuali, E. Zimran, G. Munter, and G. Nesher. 2012. A simplified scoring tool for prediction of readmission in elderly patients hospitalized in internal medicine departments. Isr. Med. Assoc. J. 14, 12, 752–756.Google ScholarGoogle Scholar
  18. G. Birkhoff. 1948. Lattice Theory. Vol. 25. American Mathematical Society, New York.Google ScholarGoogle Scholar
  19. C. Boccuti and G. Casillas. 2017. Aiming for fewer hospital U-turns: The Medicare Hospital Readmission Reduction Program. https://www.kff.org/medicare/issue-brief/aiming-for-fewer-hospital-u-turns-the-medicare-hospital-readmission-reduction-program/.Google ScholarGoogle Scholar
  20. A. Borrie, G. K. Jonsson, and M. S. Magnusson. 2002. Temporal pattern analysis and its applicability in sport: An explanation and exemplar data. J. Sports Sci. 20, 10, 845–852. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  21. I. Bowman, S. H. Joshi, and J. Van Horn. 2012. Visual systems for interactive exploration and mining of large-scale neuroimaging data archives. Front. Neuroinform. 6, 11, 1143–1150. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  22. S. Boytcheva, G. Angelova, D. Tcharaktchiev, and Z. Angelov. 2019. Big data analytics in healthcare – Pattern mining of temporal clinical events. J. Syst. Sci. Syst. Eng. 28. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  23. L. Breiman. 2001. Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statist. Sci. 16, 3, 199–231. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  24. S. Cakmak, R. E. Dales, and F. Coates. 2012. Does air pollution increase the effect of aeroallergens on hospitalization for asthma? J. Allergy Clin. Immunol. 129, 1, 228–231. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  25. V. D. Calhoun and T. Adali. 2009. Feature-based fusion of medical imaging data. IEEE Trans. Inf. Technol. Biomed. 13, 5, 711–720. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. C. S. Calude and G. Longo. 2017. The deluge of spurious correlations in big data. Found. Sci. 22, 3, 595–612. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  27. H. Cao, D. W. Cheung, and N. Mamoulis. 2004. Discovering partial periodic patterns in discrete data sequences. In Pacific-Asia Conference on Knowledge Discovery and Data Mining. 653–658. Springer, Berlin, Heidelberg. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  28. G. Casas-Garriga. 2003. Discovering Unbounded Episodes in Sequential Data. Springer, Berlin, Heidelberg. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  29. R. Casati and A. Varzi. 2015. Events. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, 2015.Google ScholarGoogle Scholar
  30. U. Cetintemel. 2003. The Aurora and Medusa projects. Data Eng. 51, 3.Google ScholarGoogle Scholar
  31. Z. Chaochen, C. A. R. Hoare, and A. P. Ravn. 1991. A calculus of durations. Inf. Process. Lett. 40, 5, 269–276. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  32. S.-S. Chen, T. C.-K. Huang, and Z.-M. Lin. 2011. New and efficient knowledge discovery of partial periodic patterns with multiple minimum supports. J. Syst. Softw. 84, 10, 1638–1651. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. E. M. Clarke and E. A. Emerson. 1981. Design and synthesis of synchronization skeletons using branching time temporal logic. In Workshop on Logic of Programs. 52–71. Springer. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. P. R. Cohen. 2001. Fluent learning: Elucidating the structure of episodes. In Advances in Intelligent Data Analysis. 268–277. Springer, Berlin, Heidelberg. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. J. Cohen. 2004. Bioinformatics – An introduction for computer scientists. ACM Comput. Surv. 36, 2, 122–158. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. E. Coward and F. Drablos. 1998. Detecting periodic patterns in biological sequences. Bioinformatics 14, 6, 498–507.Google ScholarGoogle ScholarCross RefCross Ref
  37. J. A. Cruz and D. S. Wishart. 2006. Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2, 59–77. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  38. A. A. Cruz, J. Bousquet, and N. Khaltaev. 2007. Global Surveillance, Prevention and Control of Chronic Respiratory Diseases: A Comprehensive Approach. World Health Organization, Geneva.Google ScholarGoogle Scholar
  39. G. D’Amato, G. Liccardi, M. D’amato, and M. Cazzola. 2002. Outdoor air pollution, climatic changes and allergic bronchial asthma. Eur. Respir. J. 20, 3, 763–776. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  40. B. V. Dasarathy. 1994. Decision Fusion. Vol. 1994. IEEE Computer Society Press, Los Alamitos, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. T. Desautels, R. Das, J. Calvert, M. Trivedi, C. Summers, D. J. Wales, and A. Ercole. 2017. Prediction of early unplanned intensive care unit readmission in a UK tertiary care hospital: A cross-sectional machine learning approach. BMJ Open. 7, 9, e017199. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  42. S. Duncan and N. T. Collier. 2002. C-quence: A tool for analyzing qualitative sequential data. Behav. Res. Methods 34, 1, 108–116. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  43. A. Endert, P. Fiaux, and C. North. 2012. Semantic interaction for visual text analytics. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 473–482. ACM. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. A. Ericsson and M. Berndtsson. 2007. Rex, the rule and event explorer. In Proceedings of the 2007 Inaugural International Conference on Distributed Event-Based Systems. 71–74. ACM. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. B. Evelson and N. Norman. 2008. Topic overview: Business intelligence. Forrester Res. 61.Google ScholarGoogle Scholar
  46. W. J. Ewens and G. R. Grant. 2006. Statistical Methods in Bioinformatics: An Introduction. Springer Science & Business Media. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  47. J. A. Fails, A. Karlson, L. Shahamat, and B. Shneiderman. 2006. A visual interface for multivariate temporal data: Finding patterns of events across multiple histories. In Visual Analytics Science and Technology, 2006 IEEE Symposium On. 167–174. IEEE. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  48. Z. Feldman, F. Fournier, R. Franklin, and A. Metzger. 2013. Proactive event processing in action: A case study on the proactive management of transport processes (industry article). In Proceedings of the 7th ACM International Conference on Distributed Event-Based Systems. 97–106. ACM. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. O. Firschein. 1983. Syntactic pattern recognition and applications. Proc. IEEE 71, 10, 1231.Google ScholarGoogle ScholarCross RefCross Ref
  50. C. Freksa. 1992. Temporal reasoning based on semi-intervals. Artif. Intell. 54, 1, 199–227. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. N. Friedman, K. Murphy, and S. Russell. 1998. Learning the structure of dynamic probabilistic networks. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence. 139–147. Morgan Kaufmann Publishers Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. M. C. Frith, N. F. Saunders, B. Kobe, and T. L. Bailey. 2008. Discovering sequence motifs with arbitrary insertions and deletions. PLoS Comput. Biol. 4, 5, e1000071. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  53. I. Galan, A. Tobias, J. Banegas, and E. Aranguez. 2003. Short-term effects of air pollution on daily asthma emergency room admissions. Eur. Respir. J. 22, 5, 802–808. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  54. B. Ganter. 2010. Two basic algorithms in concept analysis. In L. Kwuida, B. Sertkaya (Eds.), Formal Concept Analysis. ICFCA 2010. Lecture Notes in Computer Science, vol. 5986. Springer, Berlin, Heidelberg. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. B. Ganter and R. Wille. 2012. Formal Concept Analysis: Mathematical Foundations. Springer Science & Business Media. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  56. B. Ganter, G. Stumme, and R. Wille. 2003. Formal Concept Analysis: Methods, and Applications in Computer Science. TU Dresden. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. M. N. Garofalakis, R. Rastogi, and K. Shim. 1999. Spirit: Sequential pattern mining with regular expression constraints. In VLDB. Vol. 99. 7–10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. S. Gatziu and K. R. Dittrich. 1994. Events in an active object-oriented database system. In Rules in Database Systems. 23–39. Springer. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  59. N. H. Gehani, H. V. Jagadish, and O. Shmueli. 1992. Composite event specification in active databases: Model & implementation. In VLDB. Vol. 92, 327–338. Citeseer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. J. Gemmell, G. Bell, R. Lueder, S. Drucker, and C. Wong. 2002. MyLifeBits: Fulfilling the Memex vision. In Proceedings of the Tenth ACM International Conference on Multimedia. 235–238. ACM. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. D. Girardi, J. Küng, R. Kleiser, M. Sonnberger, D. Csillag, J. Trenkler, and A. Holzinger. 2016. Inter-active knowledge discovery with the doctor-in-the-loop: A practical example of cerebral aneurysms research. Brain Inform. 3, 3, 133–143. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  62. E. Goldstein. 2016. Sensation and Perception. Cengage Learning, 10th edition (February 2, 2016).Google ScholarGoogle Scholar
  63. D. Gotz and K. Wongsuphasawat. 2012. Interactive intervention analysis. In AMIA Annual Symposium Proceedings. Vol. 2012, 274. American Medical Informatics Association.Google ScholarGoogle Scholar
  64. D. Gotz, F. Wang, and A. Perer. 2014. A methodology for interactive mining and visual analysis of clinical event patterns using electronic health record data. J. Biomed. Inform. 48, 148–159. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. K. Gouda and M. J. Zaki. 2001. Efficiently mining maximal frequent itemsets. In Proceedings 2001 IEEE International Conference on Data Mining. San Jose, CA, USA, 163–170. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. D. Gunning. 2017a. Explainable Artificial Intelligence (XAI). https://www.darpa.mil/program/explainable-artificial-intelligence.Google ScholarGoogle Scholar
  67. D. Gunning and D. Aha. 2019. DARPA’s explainable artificial intelligence (XAI) program. AI Magazine 40, 2, 44–58. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. C. Gupta and A. Farahat. 2020. Tutorial on deep learning for industrial AI: Challenges, new methods and best practices. KDD. https://sites.google.com/view/dl-for-industrial-ai.Google ScholarGoogle Scholar
  69. C. Gurrin, A. F. Smeaton, and A. R. Doherty. 2014. Lifelogging: Personal big data. Found. Trends Inf. Ret. 8, 1, 1–125. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. J. Y. Halpern and Y. Shoham. 1991. A propositional modal logic of time intervals. J. ACM 38, 4, 935–962. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. J. Han, W. Gong, and Y. Yin. 1998. Mining segment-wise periodic patterns in time-related databases. In KDD. 214–218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu. 2000a. FreeSpan: Frequent pattern-projected sequential pattern mining. In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 355–359. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. J. Han, J. Pei, and Y. Yin. 2000b. Mining frequent patterns without candidate generation. ACM SIGMOD Rec. 29, 2, 1–12. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. J. Han, J. Wang, Y. Lu, and P. Tzvetkov. 2002. Mining top-k frequent closed patterns without minimum support. In Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on. 211–218. IEEE. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. J. Han, J. Pei, and M. Kamber. 2011. Data Mining: Concepts and Techniques. Elsevier. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  76. J. Hipp, U. Güntzer, and G. Nakhaeizadeh. 2000. Algorithms for association rule mining – A general survey and comparison. ACM Sigkdd Explor. Newsletter 2, 1, 58–64. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. M. Hirao, S. Inenaga, A. Shinohara, M. Takeda, and S. Arikawa. 2001. A practical algorithm to find the best episode patterns. In Discovery Science. 435–440. Springer. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. T. K. Ho, J. J. Hull, and S. N. Srihari. 1994. Decision combination in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 16, 1, 66–75. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. W. Hou, Q. Pan, Q. Peng, and M. He. 2017. A new method to analyze protein sequence similarity using dynamic time warping. Genomics 109, 2, 123–130. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  80. V. M. Hudson, P. A. Schrodt, and R. Whitmer. 2005. A new kind of social science? Moving ahead with reverse Wolfram models applied to event data. In Proceedings of the 46th Annual International Studies Association Convention.Google ScholarGoogle Scholar
  81. M. Jamei, A. Nisnevich, E. Wetchler, S. Sudat, and E. Liu. 2017. Predicting all-cause risk of 30-day hospital readmission using artificial neural networks. PLoS One 12, 7, e0181173. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  82. D. H. Jeong, C. Ziemkiewicz, B. D. Fisher, W. Ribarsky, and R. Chang. 2009. iPCA: An interactive system for PCA-based visual analytics. Comput. Graph. Forum 28, 767–774. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Y. Kaku, K. Kuramoto, S. Kobashi, and Y. Hata. 2012. Asthmatic attacks prediction considering weather factors based on fuzzy-AR model. In Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference on. 1–4. IEEE. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  84. E. J. Keogh and M. J. Pazzani. 1998. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback. In KDD. Vol. 98. 239–243. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. E. Keogh and S. Kasetty. 2003. On the need for time series data mining benchmarks: A survey and empirical demonstration. Data Min. Knowl. Discov. 7, 4, 349–371. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. E. Keogh and J. Lin. 2005. Clustering of time-series subsequences is meaningless: Implications for previous and future research. Knowl. Inf. syst. 8, 2, 154–177. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. M. M. H. Khan, H. K. Le, H. Ahmadi, T. F. Abdelzaher, and J. Han. 2008. Dustminer: Troubleshooting interactive complexity bugs in sensor networks. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems. 99–112. ACM. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. N.-K. Kim, K. Tharakaraman, and J. L. Spouge. 2006. Adding sequence context to a Markov background model improves the identification of regulatory elements. Bioinformatics 22, 23, 2870–2875. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  89. J. Kittler, M. Hatef, R. P. Duin, and J. Matas. 1998. On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20, 3, 226–239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. J. Kleinberg. 2003. Bursty and hierarchical structure in streams. Data Min. Knowl. Discov. 7, 4, 373–397. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. J. Kölling, D. Langenkämper, S. Abouna, M. Khan, and T. W. Nattkemper. 2012. WHIDE – A web tool for visual data mining colocation patterns in multivariate bioimages. Bioinformatics 28, 8, 1143–1150. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  92. C. Kruegel, D. Mutz, W. Robertson, and F. Valeur. 2003. Bayesian event classification for intrusion detection. In Null. 14. IEEE. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. L. I. Kuncheva. 2004. Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. L. I. Kuncheva, J. C. Bezdek, and R. P. Duin. 2001. Decision templates for multiple classifier fusion: An experimental comparison. Pattern Recognit. 34, 2, 299–314.Google ScholarGoogle ScholarCross RefCross Ref
  95. S. O. Kuznetsov and S. A. Obiedkov. 2002. Comparing performance of algorithms for generating concept lattices. J. Expl. Theor. Artif. Intell. 14, 2-3, 189–216. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  96. L. Lam and C. Y. Suen. 1995. Optimal combinations of pattern classifiers. Pattern Recognit. Lett. 16, 9, 945–954. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. M. Last, A. Kandel, and H. Bunke. 2004. Data Mining in Time Series Databases. Vol. 57. World Scientific. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. S. Laxman, P. Sastry, and K. Unnikrishnan. 2005. Discovering frequent episodes and learning hidden Markov models: A formal connection. Knowl. Data Eng. IEEE Trans. 17, 11, 1505–1517. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. V. Leat. 2007. Introduction to business intelligence. IBM Software Group, Raspoloživo na. http://www07.ibm.com/sg/events/blueprint/pdf/day1/IntroductiontoBusinessIntelligence.pdf [Pristupljeno 07.11.2016].Google ScholarGoogle Scholar
  100. C. C. Lee, S. C. Sheridan, and S. Lin. 2012. Relating weather types to asthma-related hospital admissions in New York State. EcoHealth 9, 4, 427–439. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  101. N. Lesh, M. J. Zaki, and M. Ogihara. 1999. Mining features for sequence classification. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 342–346. ACM. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. J. Y. Lettvin, H. R. Maturana, W. S. McCulloch, and W. H. Pitts. 1959. What the frog’s eye tells the frog’s brain. Proc. IRE 47, 11, 1940–1951. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  103. C.-S. Li, P. S. Yu, and V. Castelli. 1996. Hierarchyscan: A hierarchical similarity search algorithm for databases of long sequences. In Data Engineering, 1996. Proceedings of the Twelfth International Conference on. 546–553. IEEE. Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. M.-Y. Lin and S.-Y. Lee. 2003. Improving the efficiency of interactive sequential pattern mining by incremental pattern discovery. In System Sciences, 2003. Proceedings of the 36th Annual Hawaii International Conference on. 8. IEEE. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. W. Lin, M. A. Orgun, and G. J. Williams. 2002. An overview of temporal data mining. In AusDM. 83–90.Google ScholarGoogle Scholar
  106. J. Lin, E. Keogh, L. Wei, and S. Lonardi. 2007. Experiencing SAX: A novel symbolic representation of time series. Data Min. Knowl. Discov. 15, 2, 107–144. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. N. Littlestone and M. K. Warmuth. 1994. The weighted majority algorithm. Inf. Comput. 108, 2, 212–261. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. X. Liu, D. L. Brutlag, and J. S. Liu. 2000. BioProspector: Discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. In Biocomputing 2001. 127–138. World Scientific. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  109. X. S. Liu, D. L. Brutlag, and J. S. Liu. 2002. An algorithm for finding protein–DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat. Biotechnol. 20, 8, 835–839. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  110. E. Lorenz. 1972. Predictability: Does the Flap of a Butterfly’s Wings in Brazil Set Off a Tornado in Texas? na.Google ScholarGoogle Scholar
  111. J.-G. Lou, Q. Fu, Y. Wang, and J. Li. 2010. Mining dependency in distributed systems through unstructured logs analysis. ACM SIGOPS Operating Syst. Rev. 44, 1, 91–96. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. D. C. Luckham and B. Frasca. 1998. Complex event processing in distributed systems. Computer Systems Laboratory Technical Report CSL-TR-98-754. Stanford University, Stanford. 28.Google ScholarGoogle Scholar
  113. S. M. Lundberg and S.-I. Lee. 2017. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems. 4765–4774. Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. S. Ma and J. L. Hellerstein. 2001. Mining partially periodic event patterns with unknown periods. In Data Engineering, 2001. Proceedings. 17th International Conference on. 205–214. IEEE. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. M. S. Magnusson. 2000. Discovering hidden time patterns in behavior: T-patterns and their detection. Behav. Res. Methods Instrum. Comput. 32, 1, 93–110. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  116. A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios. 2009. Clustering event logs using iterative partitioning. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1255–1264. ACM. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. U. G. Mangai, S. Samanta, S. Das, and P. R. Chowdhury. 2010. A survey of decision fusion and feature fusion strategies for pattern classification. IETE Tech. Rev. 27, 4, 293–307.Google ScholarGoogle ScholarCross RefCross Ref
  118. H. Mannila, H. Toivonen, and A. I. Verkamo. 1997. Discovery of frequent episodes in event sequences. Data Min. Knowl. Discov. 1, 3, 259–289. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. F. Masseglia, P. Poncelet, and M. Teisseire. Mar. 2009. Efficient mining of sequential patterns with time constraints: Reducing the combinations. Expert Syst. Appl. 36, 2, 2677–2690. ISSN 0957-4174. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. Y. Mizunuma, S. Yamamoto, Y. Yamaguchi, A. Ikeuchi, T. Satoh, and S. Shimada. 2014. Twitter bursts: Analysis of their occurrences and classifications. In ICDS 2014, The Eighth International Conference on Digital Society. 182–187.Google ScholarGoogle Scholar
  121. F. Moerchen. 2006. Algorithms for time series knowledge mining. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 668–673. ACM. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. F. Moerchen and D. Fradkin. 2010. Robust mining of time intervals with semi-interval partial order patterns. In SDM. 315–326. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  123. C. S. Möller-Levet, F. Klawonn, K.-H. Cho, and O. Wolkenhauer. 2003. Fuzzy clustering of short time-series and unevenly distributed sampling points. In International Symposium on Intelligent Data Analysis. 330–340. Springer.Google ScholarGoogle Scholar
  124. C. Mooney and J. F. Roddick. 2004. Mining relationships between interacting episodes. In SDM. 1–10. SIAM. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  125. T. Morzy, M. Wojciechowski, and M. Zakrzewicz. 2002. Efficient constraint-based sequential pattern mining using dataset filtering techniques. In Databases and Information Systems II. 297–309. Springer.Google ScholarGoogle Scholar
  126. B. C. Moszkowski. 1983. Reasoning about Digital Circuits. Technical report, DTIC Document.Google ScholarGoogle Scholar
  127. M. Müller. 2007. Dynamic time warping. Information Retrieval for Music and Motion. 69–84. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  128. S. B. Needleman and C. D. Wunsch. 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 3, 443–453. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  129. L. Nourine and O. Raynaud. 1999. A fast algorithm for building lattices. Inf. Process. Lett. 71, 5, 199–204. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. D. Oberle. 2006. Semantic Management of Middleware, Vol. 1. Springer Science & Business Media. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. H. Oh and R. Jain. 2017. From multimedia logs to personal chronicles. In Proceedings of the 25th ACM International Conference on Multimedia. ACM, 881–889. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  132. H. Oh and R. Jain. 2019. Detecting events of daily living using multimodal data. arXiv preprint arXiv:1905.09402.Google ScholarGoogle Scholar
  133. G. D. Oosthuizen. 1992. The Use of a Lattice in Knowledge Processing. Ph.D. Dissertation, University of Strathclyde. Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. Ozden, S. Ramaswamy, and A. Silberschatz. 1998. Cyclic association rules. In Data Engineering, 1998. Proceedings., 14th International Conference on. IEEE, 412–421. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. Pastrello, E. Pasini, M. Kotlyar, D. Otasek, S. Wong, W. Sangrar, S. Rahmati, and I. Jurisica. 2014. Integration, visualization and analysis of human interactome. Biochem. Biophys. Res. Commun. 445, 4, 757–773. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  136. Patnaik, P. Butler, N. Ramakrishnan, L. Parida, B. J. Keller, and D. A. Hanauer. 2011. Experiences with mining temporal event sequences from electronic medical records: Initial successes and some challenges. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 360–368. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  137. D. Patnaik, S. Laxman, B. Chandramouli, and N. Ramakrishnan. 2012. Efficient episode mining of dynamic event streams. In Data Mining (ICDM), 2012 IEEE 12th International Conference on. IEEE, 605–614. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. J. Pearl. 2000. Causality: Models, Reasoning and Inference, Vol. 29. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. J. Pearl. 2019. The seven tools of causal inference, with reflections on machine learning. Commun. ACM 62, 3, 54–60. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  140. J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu. 2000. Mining access patterns efficiently from web logs. In Knowledge Discovery and Data Mining. Current Issues and New Applications. Springer, 396–407. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  141. J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. 2001. PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. In ICCCN. IEEE, 215. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  142. J. Pei, J. Han, and W. Wang. 2002. Mining sequential patterns with constraints in large databases. In Proceedings of the Eleventh International Conference on Information and Knowledge Management. ACM, 18–25. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.-C. Hsu. 2004. Mining sequential patterns by pattern-growth: The PrefixSpan approach. IEEE Trans. Knowl. Data. Eng. 16, 10, 1424–1440. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  144. G. R. Peterson. 2003. Demarcation and the scientistic fallacy. Zygon® 38, 4, 751–761. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  145. C. Plaisant, R. Mushlin, A. Snyder, J. Li, D. Heller, and B. Shneiderman. 1998. LifeLines: Using visualization to enhance navigation and analysis of patient records. In Proceedings of the AMIA Symposium. American Medical Informatics Association, 76.Google ScholarGoogle Scholar
  146. A. Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977). IEEE, 46–57. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. Z. Qiu, C. Gurrin, and A. F. Smeaton. 2016. Evaluating access mechanisms for multimodal representations of lifelogs. In MultiMedia Modeling. Springer, 574–585. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. A. Quinton. 1979. Objects and events. Mind 88, 350, 197–214.Google ScholarGoogle Scholar
  149. M. Ramoni, P. Sebastiani, and P. Cohen. 2000. Multivariate clustering by dynamics. In AAAI/IAAI. 633–638. Google ScholarGoogle ScholarDigital LibraryDigital Library
  150. M. Ramoni, P. Sebastiani, and P. Cohen. 2002. Bayesian clustering by dynamics. Mach. Learn. 47, 1, 91–121. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  151. M. T. Ribeiro, S. Singh, and C. Guestrin. 2018. Anchors: High-precision model-agnostic explanations. In Thirty-Second AAAI Conference on Artificial Intelligence.Google ScholarGoogle Scholar
  152. S. Rose. 2013. Mortality risk score prediction in an elderly population using machine learning. Am. J. Epidemiol. 177, 5, 443–452. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  153. O. P. Rud. 2009. Business Intelligence Success Factors: Tools for Aligning Your Business in the Global Economy, Vol. 18. John Wiley & Sons.Google ScholarGoogle Scholar
  154. A. Russell and B. Brunekreef. 2009. A focus on particulate matter and health. Environ. Sci. Technol. 43, 13, 4620–4625. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  155. H. Sayyadi and L. Raschid. 2013. A graph analytical approach for topic detection. ACM Transactions on Internet Technology (TOIT) 13, 2, 4. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  156. A. Scherp and V. Mezaris. 2014. Survey on modeling and indexing events in multimedia. Multimed. Tools Appl. 70, 1, 7–23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. K. Shameer, K. W. Johnson, A. Yahi, R. Miotto, L. Li, D. Ricks, J. Jebakaran, P. Kovatch, P. P. Sengupta, S. Gelijns, A. Moskovitz, B. Darrow, D. L. David, A. Kasarskis, N. P. Tatonetti, S. Pinney, and J. T. Dudley. 2017. Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: A case-study using Mount Sinai heart failure cohort. In Pacific Symposium on Biocomputing 2017. World Scientific, 276–287. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  158. I. Shams, S. Ajorlou, and K. Yang. 2015. A predictive analytics approach to reducing 30-day avoidable readmissions among patients with heart failure, acute myocardial infarction, pneumonia, or COPD. Health Care Manag. Sci. 18, 1, 19–34.Google ScholarGoogle ScholarCross RefCross Ref
  159. P. Shan Kam and W.-C. A. Fu. 2000. Discovering Temporal Patterns for Interval-Based Events. Springer. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  160. X.-S. Si, W. Wang, C.-H. Hu, and D.-H. Zhou. 2011. Remaining useful life estimation – a review on the statistical data driven approaches. Eur. J. Oper. Res. 213, 1, 1–14.Google ScholarGoogle ScholarCross RefCross Ref
  161. V. K. Singh and R. Jain. 2016. Situation Recognition Using EventShop. Springer. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  162. R. Sipos, D. Fradkin, F. Moerchen, and Z. Wang. 2014. Log-based predictive maintenance. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 1867–1876. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  163. H. Skutkova, M. Vitek, P. Babula, R. Kizek, and I. Provaznik. 2013. Classification of genomic signals using dynamic time warping. BMC Bioinform. 14, 10, S1. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  164. T. F. Smith and M. S. Waterman. 1981. Identification of common molecular subsequences. J. Mol. Biol. 147, 1, 195–197. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  165. P. Smyth. 1997. Clustering sequences with hidden Markov models. In Advances in Neural Information Processing Systems. 648–654. Google ScholarGoogle ScholarDigital LibraryDigital Library
  166. R. Srikant and R. Agrawal. 1996. Mining sequential patterns: Generalizations and performance improvements. Advances in Database Technology—EDBT’96. 1–17. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  167. G. K. Tam, V. Kothari, and M. Chen. 2017. An analysis of machine- and human-analytics in classification. IEEE Trans. Vis. Comput. Graph. 23, 1, 71–80. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  168. S. K. Tanbeer, C. F. Ahmed, B.-S. Jeong, and Y.-K. Lee. 2009a. Discovering periodic-frequent patterns in transactional databases. In T. Theeramunkong, B. Kijsirikul, N. Cercone, and T.-B. Ho (Eds.), Advances in Knowledge Discovery and Data Mining: 13th Pacific-Asia Conference, PAKDD 2009 Bangkok, Thailand, April 27–30, 2009 Proceedings. Springer Berlin Heidelberg, Berlin, 242–253. ISBN: 978-3-642-01307-2. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  169. S. K. Tanbeer, C. F. Ahmed, B.-S. Jeong, and Y.-K. Lee. 2009b. Discovering periodic-frequent patterns in transactional databases. In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 242–253. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  170. L. Tang and T. Li. 2010. LogTree: A framework for generating system events from raw textual logs. In 2010 IEEE International Conference on Data Mining. IEEE, 491–500. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  171. L. Tang, T. Li, and C.-S. Perng. 2011. LogSig: Generating system events from raw textual logs. In Proceedings of the 20th ACM international Conference on Information and Knowledge Management. ACM, 785–794. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  172. Z. Troníček. 2001. Episode matching. In Combinatorial Pattern Matching. Springer, 143–146. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  173. R. Vaculin and K. Sycara. 2007. Specifying and monitoring composite events for semantic web services. In Fifth European Conference on Web Services (ECOWS’07), Halle, Germany. IEEE, 87–96. .Google ScholarGoogle ScholarDigital LibraryDigital Library
  174. P. Valtchev, R. Missaoui, and P. Lebrun. 2002. A partition-based approach towards constructing Galois (concept) lattices. Discrete Math. 256, 3, 801–829. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  175. M. Vlachos, G. Kollios, and D. Gunopulos. 2002. Discovering similar multidimensional trajectories. In Data Engineering, 2002. Proceedings. 18th International Conference on. IEEE, 673–684. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  176. I. A. Wadman, H. Osada, G. G. Grütz, A. D. Agulnick, H. Westphal, A. Forster, and T. H. Rabbitts. 1997. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 16, 11, 3145–3157. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  177. B. C. Wengerter, K. Y. Pei, D. Asuzu, and K. A. Davis. 2018. Rothman index variability predicts clinical deterioration and rapid response activation. Am. J. Surg. 215, 1, 37–41. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  178. U. Westermann and R. Jain. 2006. Events in multimedia electronic chronicles (E-chronicles). International Journal on Semantic Web and Information Systems (IJSWIS) 2, 2, 1–23. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  179. U. Westermann and R. Jain. 2007. Toward a common event model for multimedia applications. IEEE MultiMedia 14, 1. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  180. K. Wongsuphasawat and B. Shneiderman. 2009. Finding comparable temporal categorical records: A similarity measure with an interactive visualization. In Visual Analytics Science and Technology, 2009. VAST 2009. IEEE Symposium on. IEEE, 27–34. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  181. K. Wongsuphasawat and D. Gotz. 2011. Outflow: Visualizing patient flow by symptoms and outcome. In IEEE VisWeek Workshop on Visual Analytics in Healthcare, Providence, Rhode Island, USA. American Medical Informatics Association, 25–28.Google ScholarGoogle Scholar
  182. K. Wongsuphasawat and D. Gotz. 2012. Exploring flow, factors, and outcomes of temporal event sequences with the outflow visualization. Visualization and Computer Graphics, IEEE Transactions on 18, 12, 2659–2668. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  183. S.-Y. Wu and Y.-L. Chen. 2007. Mining nonambiguous temporal patterns for interval-based events. IEEE Trans. Knowl. Data Eng. 19, 6, 742–758. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  184. J. Wu, J. Roy, and W. F. Stewart. 2010. Prediction modeling using EHR data: Challenges, strategies, and a comparison of machine learning approaches. Med. Care, S106–S113. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  185. L. Xie, H. Sundaram, and M. Campbell. 2008. Event mining in multimedia streams. Proc. IEEE 96, 4, 623–647. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  186. Y. Xiong and D.-Y. Yeung. 2002. Mixtures of ARMA models for model-based time series clustering. In Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on. IEEE, 717–720. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  187. H. Yan, L. Breslau, Z. Ge, D. Massey, D. Pei, and J. Yates. 2012. G-RCA: A generic root cause analysis platform for service quality management in large IP networks. IEEE/ACM Transactions on Networking (TON) 20, 6, 1734–1747. Google ScholarGoogle ScholarDigital LibraryDigital Library
  188. H. Yao, H. J. Hamilton, and C. J. Butz. 2004. A foundational approach to mining itemset utilities from databases. In Proceedings of the 2004 SIAM International Conference on Data Mining. SIAM, 482–486. DOI: .Google ScholarGoogle ScholarCross RefCross Ref
  189. M. J. Zaki. 2000. Scalable algorithms for association mining. IEEE Trans. Knowl. Data. Eng. 12, 3, 372–390. DOI: .Google ScholarGoogle ScholarDigital LibraryDigital Library
  190. G. Zweig. 1998. Speech Recognition with Dynamic BAYESIAN Networks. Ph.D. Dissertation. University of California, Berkeley. Google ScholarGoogle ScholarDigital LibraryDigital Library
Contributors
  • University of California, Irvine
  • University of California, Irvine
Index terms have been assigned to the content through auto-classification.

Recommendations