skip to main content
10.1145/3469096.3470833acmconferencesArticle/Chapter ViewAbstractPublication PagesdocengConference Proceedingsconference-collections
panel

Binarisation of photographed documents image quality and processing time assessment

Published:16 August 2021Publication History

ABSTRACT

Smartphones with cameras are omnipresent in today's world and are very often used to photograph documents. Document binarization is a key process in many document processing platforms. This competition on binarizing photographed documents assessed the quality and time performance of 13 new algorithms and 50 existing algorithms. The evaluation dataset is composed of offset, laser, and deskjet printed documents, photographed using four widely-used mobile devices with the strobe flash on and off, under two different angles and places of capture.

References

  1. Y. Akbari et. al. 2019. Binarization of Degraded Document Images using Convolutional Neural Networks based on predicted Two-Channel Images. In ICDAR'19.Google ScholarGoogle ScholarCross RefCross Ref
  2. Reza Azad, M. Asadi-Aghbolaghi, M. Fathy, and S. Escalera. 2019. Bi-directional ConvLSTM U-net with densley connected convolutions. ICCVW 2019 (2019).Google ScholarGoogle Scholar
  3. Bilal Bataineh, S. N. H. S. Abdullah, and K. Omar. 2011. An adaptive local binarization method for document images based on a novel thresholding method and dynamic windows. Pattern Recog. Letters 32, 14 (2011).Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Suman K. Bera et al. 2021. A non-parametric binarization method based on ensemble of clustering algorithms. Multim. Tools and Applications 80, 5 (2021).Google ScholarGoogle Scholar
  5. J Bernsen. 1986. Dynamic thresholding of gray-level images. In ICPR.Google ScholarGoogle Scholar
  6. Derek Bradley and G. Roth. 2007. Adaptive Thresholding using the Integral Image. Journal of Graphics Tools 12, 2 (2007).Google ScholarGoogle ScholarCross RefCross Ref
  7. Jorge Calvo-Zaragoza and A. Gallego. 2019. A selectional auto-encoder approach for document image binarization. Pattern Recog. 86 (2019).Google ScholarGoogle Scholar
  8. W. Doyle. 1962. Operations Useful for Similarity-Invariant Pattern Recognition. J. ACM 9, 2 (1962), 259--267.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. R. Dueire Lins, S. J. Simske, and R. B. Bernardino. 2020. DocEng'20 Time-Quality Competition on Binarizing Photographed Documents. In DocEng'20. ACM.Google ScholarGoogle Scholar
  10. A. Gattal, F. Abbas, and M. R. Laouar. 2018. Automatic Parameter Tuning of K-Means Algorithm for Document Binarization. In ICSENT.Google ScholarGoogle Scholar
  11. C Glasbey. 1993. An Analysis of Histogram-Based Thresholding Algorithms. Graphical Models and Image Processing 55, 6 (1993), 532--537.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Zineb Hadjadj et al. 2016. ISauvola: Improved Sauvola's Algorithm for Document Image Binarization. Lecture Notes in CS, Vol. 3212. Springer Berlin Heidelberg.Google ScholarGoogle Scholar
  13. Sheng He and L. Schomaker. 2019. DeepOtsu: Document Enhancement and Binarization using Iterative Deep Learning. Pattern Recognition 91 (2019).Google ScholarGoogle Scholar
  14. Nicholas R. Howe. 2013. Document binarization with automatic parameter tuning. International Journal on Document Analysis and Recognition (IJDAR) 16, 3 (2013).Google ScholarGoogle Scholar
  15. L. Kai Huang and M. J. J. Wang. 1995. Image thresholding by minimizing the measures of fuzziness. Pattern Recognition 28, 1 (1995), 41--51.Google ScholarGoogle ScholarCross RefCross Ref
  16. Fuxi Jia, C. Shi, K. He, C. Wang, and B. Xiao. 2018. Degraded document image binarization using structural symmetry of strokes. Pattern Recognition 74 (2018).Google ScholarGoogle Scholar
  17. J Johannsen, G and Bille. 1982. A threshold selection method using information measures. In Int'l Conf. Pattern Recognition. 140--143.Google ScholarGoogle Scholar
  18. J.N. Kapur et al. 1985. A new method for gray-level picture thresholding using the entropy of the histogram. Comp. Vision, Graphics, and Im. Proc. 29, 1 (1985).Google ScholarGoogle Scholar
  19. E. Kavallieratou and S. Stathis. 2006. Adaptive binarization of historical document images. ICPR 3 (2006).Google ScholarGoogle Scholar
  20. Khurram Khurshid, I. Siddiqi, C. Faure, and N. Vincent. 2009. Comparison of Niblack inspired binarization methods for ancient documents. In SPIE Proceedings, Kathrin Berkner and Laurence Likforman-Sulem (Eds.).Google ScholarGoogle Scholar
  21. J. Kittler and J. Illingworth. 1986. Minimum error thresholding. Pattern Recognition 19, 1 (1986), 41--47.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Xiangmao Kong, G. Sun, Q. Wu, J. Liu, and F. Lin. 2018. Hybrid pyramid u-net model for brain tumor segmentation. In ICIIP. Springer.Google ScholarGoogle Scholar
  23. C.H. Li and P.K.S. Tam. 1998. An iterative algorithm for minimum cross entropy thresholding. Pattern Recognition Letters 19, 8 (1998).Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Rafael Dueire Lins, R. B. Bernardino, et al. 2021. DocEng'2021 Direct Binarization A Quality-and-Time Efficient Binarization Strategy. In DocEng 2021. ACM.Google ScholarGoogle Scholar
  25. Rafael Dueire Lins, R. B. Bernardino, and et. al. 2017. Binarizing Document Images Acquired with Portable Cameras. In 2017 14th ICDAR. IEEE.Google ScholarGoogle Scholar
  26. Rafael Dueire Lins, E. Kavallieratou, E. B. Smith, R. B. Bernardino, and D. M. de Jesus. 2019. ICDAR 2019 Time-Quality Binarization Competition. In 2019 15th ICDAR.Google ScholarGoogle Scholar
  27. Shijian Lu, Bolan Su, and Chew Lim Tan. 2010. Document image binarization using background estimation and stroke edges. IJDAR 13, 4 (2010), 303--314.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wu Lu, M. Songde, and H. Lu. 1998. An effective entropic thresholding for ultrasonic images. 14th ICPR (1998).Google ScholarGoogle Scholar
  29. C A B Mello and Rafael Dueire Lins. 2000. Image segmentation of historical documents. Visual 2000 (2000).Google ScholarGoogle Scholar
  30. W. A. Mustafa and A. M. Kader. 2018. Binarization of Document Image Using Optimum Threshold Modification. J. of Physics: Conference Series 1019, 1 (2018).Google ScholarGoogle ScholarCross RefCross Ref
  31. Wayne Niblack. 1985. An introduction to digital image processing. Strandberg Publishing Company.Google ScholarGoogle Scholar
  32. Sofia A. Oliveira, B. Seguin, and F. Kaplan. 2018. dhSegment: A generic deep-learning approach for document segmentation. CoRR abs/1804.1 (2018).Google ScholarGoogle Scholar
  33. Nobuyuki Otsu. 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9, 1 (1979).Google ScholarGoogle ScholarCross RefCross Ref
  34. Judith M. S. Prewitt and M. L. Mendelsohn. 2006. The Analysis of Cell Images. Annals of the New York Academy of Sciences 128, 3 (dec 2006), 1035--1053.Google ScholarGoogle ScholarCross RefCross Ref
  35. T. Pun. 1981. Entropic thresholding, a new approach. Computer Graphics and Image Processing 16, 3 (1981), 210--239.Google ScholarGoogle ScholarCross RefCross Ref
  36. Khairun Saddami, P. Afrah, V. Mutiawani, et al. 2018. A New Adaptive Thresholding Technique for Binarizing Ancient Document. In 2018 INAPR. IEEE.Google ScholarGoogle Scholar
  37. Khairun Saddami, K. Munadi, et al. 2017. Improved Thresholding Method for Enhancing Jawi Binarization Performance. In 2017 14th ICDAR, Vol. 1. IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  38. Khairun Saddami, K. Munadi, Y. Away, et al. 2019. Combination Local and Global Thresholding Method for Binarizing Ancient Jawi Document. JTIIK (2019).Google ScholarGoogle Scholar
  39. Prasanna Sahoo, C. Wilkins, and J. Yeager. 1997. Threshold selection using Renyi's entropy. Pattern Recognition 30, 1 (1997).Google ScholarGoogle Scholar
  40. J. Sauvola and M. Pietikäinen. 2000. Adaptive document image binarization. Pattern Recognition 33, 2 (2000).Google ScholarGoogle Scholar
  41. A.G. G Shanbhag. 1994. Utilization of Information Measure as a Means of Image Thresholding. CVGIP: Graphical Models and Image Processing 56, 5 (1994).Google ScholarGoogle Scholar
  42. J. M. M. Silva, Rafael Dueire Lins, and V. C. Rocha. 2006. Binarizing and Filtering Historical Documents with Back-to-Front Interference. In ACM SIGAPP 2006.Google ScholarGoogle Scholar
  43. T. Romen Singh, S. Roy, O. I. Singh, et al. 2011. A New Local Adaptive Thresholding Technique in Binarization. IJCSI 08, 6 (2011).Google ScholarGoogle Scholar
  44. Elisa B. Smith, L. Likforman-Sulem, and J. Darbon. 2010. Effect of pre-processing on binarization. In Document Recognition and Retrieval XVII.Google ScholarGoogle Scholar
  45. V. Sokratis, E. Kavallieratou, R. Paredes, and K. Sotiropoulos. 2011. A Hybrid Binarization Technique for Document Images. In Studies in Comp. Intelligence.Google ScholarGoogle Scholar
  46. M. A. Souibgui and Y. Kessentini. 2021. DE-GAN: A Conditional Generative Adversarial Network for Document Enhancement. IEEE T. P. A. M. Int. (2021).Google ScholarGoogle Scholar
  47. Bolan Su, S. Lu, and C. L. Tan. 2010. Binarization of historical document images using the local maximum and minimum. In 8th IAPR DAS '10. ACM Press.Google ScholarGoogle Scholar
  48. Wen-Hsiang Tsai. 1985. Moment-preserving thresolding: A new approach. Computer Vision, Graphics, and Image Processing 29, 3 (1985).Google ScholarGoogle Scholar
  49. Flavio R. Velasco. 1979. Thresholding Using the Isodata Clustering Algorithm. Technical Report. OSD or Non-Service DoD Agency.Google ScholarGoogle Scholar
  50. Christian Wolf et. al. 2003. Text localization, enhancement and binarization in multimedia documents, Vol. 2. IEEE Comput. Soc.Google ScholarGoogle Scholar
  51. Jui Cheng Yen, F. J. Chang, and S. Chang. 1995. A New Criterion for Automatic Multilevel Thresholding. IEEE Transactions on Image Processing 4, 3 (1995).Google ScholarGoogle Scholar
  52. G W Zack, W E Rogers, and S A Latt. 1977. Automatic measurement of sister chromatid exchange frequency. Journal of Histochem. and Cytochem. 25, 7 (1977).Google ScholarGoogle ScholarCross RefCross Ref
  53. Lichen Zhou et al. 2018. D-linknet: Linknet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. In IEEE CS CCVPR Workshops.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    DocEng '21: Proceedings of the 21st ACM Symposium on Document Engineering
    August 2021
    178 pages
    ISBN:9781450385961
    DOI:10.1145/3469096

    Copyright © 2021 Owner/Author

    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 16 August 2021

    Check for updates

    Qualifiers

    • panel

    Acceptance Rates

    Overall Acceptance Rate178of537submissions,33%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader