skip to main content
10.1145/3470496.3527394acmconferencesArticle/Chapter ViewAbstractPublication PagesiscaConference Proceedingsconference-collections
research-article

2QAN: a quantum compiler for 2-local qubit hamiltonian simulation algorithms

Published:11 June 2022Publication History

ABSTRACT

Simulating quantum systems is one of the most important potential applications of quantum computers. The high-level circuit defining the simulation needs to be compiled into one that complies with hardware limitations such as qubit architecture (connectivity) and instruction (gate) set. General-purpose quantum compilers work at the gate level and have little knowledge of the mathematical properties of quantum applications, missing further optimization opportunities. Existing application-specific compilers only apply advanced optimizations in the scheduling procedure and are restricted to the CNOT or CZ gate set. In this work, we develop a compiler, named 2QAN, to optimize quantum circuits for 2-local qubit Hamiltonian simulation problems, a framework which includes the important quantum approximate optimization algorithm (QAOA). In particular, we exploit the flexibility of permuting different operators in the Hamiltonian (no matter whether they commute) and propose permutation-aware techniques for qubit routing, gate optimization and scheduling to minimize compilation overhead. 2QAN can target different architectures and different instruction sets. Compilation results on four applications (up to 50 qubits) and three quantum computers (namely, Google Sycamore, IBMQ Montreal and Rigetti Aspen) show that 2QAN outperforms state-of-the-art general-purpose compilers and application-specific compilers. Specifically, 2QAN can reduce the number of inserted SWAP gates by 11.5X, reduce overhead in hardware gate count by 68.5X, and reduce overhead in circuit depth by 21X. Experimental results on the Montreal device demonstrate that benchmarks compiled by 2QAN achieve the highest fidelity.

References

  1. P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 124--134, 1994.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Joe O'Gorman and Earl T. Campbell. Quantum computation with realistic magic-state factories. Phys. Rev. A, 95:032338, Mar 2017.Google ScholarGoogle ScholarCross RefCross Ref
  3. Richard P Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21(6/7), 1982.Google ScholarGoogle Scholar
  4. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. Cold bosonic atoms in optical lattices. Phys. Rev. Lett., 81:3108--3111, Oct 1998.Google ScholarGoogle ScholarCross RefCross Ref
  5. Tim Byrnes and Yoshihisa Yamamoto. Simulating lattice gauge theories on a quantum computer. Phys. Rev. A, 73:022328, Feb 2006.Google ScholarGoogle ScholarCross RefCross Ref
  6. P. D. Nation, M. P. Blencowe, A. J. Rimberg, and E. Buks. Analogue hawking radiation in a dc-squid array transmission line. Phys. Rev. Lett., 103:087004, Aug 2009.Google ScholarGoogle ScholarCross RefCross Ref
  7. David Poulin, Matthew B Hastings, Dave Wecker, Nathan Wiebe, Andrew C Doherty, and Matthias Troyer. The Trotter step size required for accurate quantum simulation of quantum chemistry. arXiv preprint arXiv:1406.4920, 2014.Google ScholarGoogle Scholar
  8. Stephen P Jordan, Keith SM Lee, and John Preskill. Quantum algorithms for quantum field theories. Science, 336(6085):1130--1133, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  9. Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas Monz, Heng Shen, Petar Jurcevic, Ben P. Lanyon, Peter Love, Ryan Babbush, Alán Aspuru-Guzik, Rainer Blatt, and Christian F. Roos. Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X, 8:031022, Jul 2018.Google ScholarGoogle Scholar
  10. Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Andreas Bengtsson, Sergio Boixo, Michael Broughton, Bob B Buckley, David A Buell, Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Yu-An Chen, Ben Chiaro, Roberto Collins, Stephen J Cotton, William Courtney, Sean Demura, Alan Derk, Andrew Dunsworth, Daniel Eppens, Thomas Eckl, Catherine Erickson, Edward Farhi, Austin Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Rob Graff, Jonathan A Gross, Steve Habegger, Matthew P Harrigan, Alan Ho, Sabrina Hong, Trent Huang, William Huggins, Lev B Ioffe, Sergei V Isakov, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Seon Kim, Paul V Klimov, Alexander N Korotkov, Fedor Kostritsa, David Landhuis, Pavel Laptev, Mike Lindmark, Erik Lucero, Michael Marthaler, Orion Martin, John M Martinis, Anika Marusczyk, Sam McArdle, Jarrod R McClean, Trevor McCourt, Matt McEwen, Anthony Megrant, Carlos Mejuto-Zaera, Xiao Mi, Masoud Mohseni, Wojciech Mruczkiewicz, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Hartmut Neven, Michael Newman, Murphy Yuezhen Niu, Thomas E O'Brien, Eric Ostby, Bálint Pató, Andre Petukhov, Harald Putterman, Chris Quintana, Jan-Michael Reiner, Pedram Roushan, Nicholas C Rubin, Daniel Sank, Kevin J Satzinger, Vadim Smelyanskiy, Doug Strain, Kevin J Sung, Peter Schmitteckert, Marco Szalay, Norm M Tubman, Amit Vainsencher, Theodore White, Nicolas Vogt, Z Jamie Yao, Ping Yeh, Adam Zalcman, and Sebastian Zanker. Observation of separated dynamics of charge and spin in the Fermi-Hubbard model. arXiv preprint arXiv:2010.07965, October 2020.Google ScholarGoogle Scholar
  11. I. M. Georgescu, S. Ashhab, and Franco Nori. Quantum simulation. Rev. Mod. Phys., 86:153--185, Mar 2014.Google ScholarGoogle ScholarCross RefCross Ref
  12. Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 103:150502, Oct 2009.Google ScholarGoogle ScholarCross RefCross Ref
  13. Fernando GSL Brandao and Krysta M Svore. Quantum speed-ups for solving semidefinite programs. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 415--426. IEEE, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  14. Andrew M Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann, and Daniel A Spielman. Exponential algorithmic speedup by a quantum walk. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 59--68, 2003.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hale F Trotter. On the product of semi-groups of operators. Proceedings of the American Mathematical Society, 10(4):545--551, 1959.Google ScholarGoogle ScholarCross RefCross Ref
  16. Seth Lloyd. Universal quantum simulators. Science, pages 1073--1078, 1996.Google ScholarGoogle Scholar
  17. Masuo Suzuki. General theory of fractal path integrals with applications to many-body theories and statistical physics. Journal of Mathematical Physics, 32(2):400--407, 1991.Google ScholarGoogle ScholarCross RefCross Ref
  18. Ryan Babbush, Jarrod McClean, Dave Wecker, Alán Aspuru-Guzik, and Nathan Wiebe. Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation. Phys. Rev. A, 91:022311, Feb 2015.Google ScholarGoogle ScholarCross RefCross Ref
  19. Andrew M Childs, Dmitri Maslov, Yunseong Nam, Neil J Ross, and Yuan Su. Toward the first quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences, 115(38):9456--9461, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  20. John Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  21. Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gid-ney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505--510, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  22. IBM. IBM Quantum Experience Devices. https://quantum-computing.ibm.com/, 2020.Google ScholarGoogle Scholar
  23. Rigetti. Rigetti computing. https://www.rigetti.com/, 2020.Google ScholarGoogle Scholar
  24. Alwin Zulehner, Alexandru Paler, and Robert Wille. An efficient methodology for mapping quantum circuits to the IBM QX architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 38(7):1226--1236, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  25. Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will Simmons, and Seyon Sivarajah. On the qubit routing problem. arXiv preprint arXiv:1902.08091, 2019.Google ScholarGoogle Scholar
  26. Lingling Lao, Hans van Someren, Imran Ashraf, and Carmen G. Almudever. Timing and resource-aware mapping of quantum circuits to superconducting processors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pages 1--1, 2021.Google ScholarGoogle Scholar
  27. Andrew M Childs, Eddie Schoute, and Cem M Unsal. Circuit transformations for quantum architectures. arXiv preprint arXiv:1902.09102, 2019.Google ScholarGoogle Scholar
  28. Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping problem for NISQ-era quantum devices. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, pages 1001--1014. ACM, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T Chong, and Margaret Martonosi. Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, pages 1015--1029, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross Duncan. t|ket>: a retargetable compiler for NISQ devices. Quantum Science and Technology, 6(1):014003, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  31. Héctor Abraham, AduOffei, Rochisha Agarwal, et al., Qiskit: An open-source framework for quantum computing, 2019.Google ScholarGoogle Scholar
  32. Pierre-Luc Dallaire-Demers and Frank K. Wilhelm. Quantum gates and architecture for the quantum simulation of the Fermi-Hubbard model. Phys. Rev. A, 94:062304, Dec 2016.Google ScholarGoogle ScholarCross RefCross Ref
  33. Davide Venturelli, Minh Do, Eleanor Rieffel, and Jeremy Frank. Compiling quantum circuits to realistic hardware architectures using temporal planners. Quantum Science and Technology, 3(2):025004, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  34. Yunong Shi, Nelson Leung, Pranav Gokhale, Zane Rossi, David I Schuster, Henry Hoffmann, and Frederic T Chong. Optimized compilation of aggregated instructions for realistic quantum computers. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, pages 1031--1044, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Pranav Gokhale, Yongshan Ding, Thomas Propson, Christopher Winkler, Nelson Leung, Yunong Shi, David I Schuster, Henry Hoffmann, and Frederic T Chong. Partial compilation of variational algorithms for noisy intermediate-scale quantum machines. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, pages 266--278, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. Circuit compilation methodologies for quantum approximate optimization algorithm. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 215--228. IEEE, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  37. Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. An efficient circuit compilation flow for quantum approximate optimization algorithm. In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages 1--6. IEEE, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  38. Mahabubul Alam, Abdullah Ash-Saki, Junde Li, Anupam Chattopadhyay, and Swaroop Ghosh. Noise resilient compilation policies for quantum approximate optimization algorithm. In Proceedings of the 39th International Conference on Computer-Aided Design, pages 1--7, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Gushu Li, Yunong Shi, and Ali Javadi-Abhari. Software-hardware co-optimization for computational chemistry on superconducting quantum processors. arXiv preprint arXiv:2105.07127, 2021.Google ScholarGoogle Scholar
  40. Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, and Yuan Xie. Paulihedral: A generalized block-wise compiler optimization framework for quantum simulation kernels. arXiv preprint arXiv:2109.03371, 2021.Google ScholarGoogle Scholar
  41. Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm. arXiv:1411.4028, 2014.Google ScholarGoogle Scholar
  42. Andrew M Childs, Aaron Ostrander, and Yuan Su. Faster quantum simulation by randomization. Quantum, 3:182, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  43. Earl Campbell. Random compiler for fast hamiltonian simulation. Phys. Rev. Lett., 123:070503, Aug 2019.Google ScholarGoogle ScholarCross RefCross Ref
  44. Joonho Lee, William J Huggins, Martin Head-Gordon, and K Birgitta Whaley. Generalized unitary coupled cluster wave functions for quantum computation. Journal of chemical theory and computation, 15(1):311--324, 2018.Google ScholarGoogle Scholar
  45. Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M Chow, and Jay M Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549(7671):242--246, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  46. Werner Heisenberg. Zur theorie des ferromagnetismus. In Original Scientific Papers Wissenschaftliche Originalarbeiten, pages 580--597. Springer, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  47. RKManojkumar Singh, Nishith Kumar Pal, Mandira Banerjee, Soma Sarkar, and Manideepa SenGupta. Surveillance on extended spectrum [beta]-lactamase and ampc [beta]-lactamase producing gram negative isolates from nosocomial infections. Archives of clinical microbiology, 3(3), 2012.Google ScholarGoogle Scholar
  48. John J Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8):2554--2558, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  49. J-S Wang, W Selke, VI S Dotsenko, and VB Andreichenko. The critical behaviour of the two-dimensional dilute ising magnet. Physica A: Statistical Mechanics and its Applications, 164(2):221--239, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  50. Deanna M Abrams, Nicolas Didier, Blake R Johnson, Marcus P da Silva, and Colm A Ryan. Implementation of the XY interaction family with calibration of a single pulse. arXiv preprint arXiv:1912.04424, 2019.Google ScholarGoogle Scholar
  51. B. Foxen, C. Neill, A. Dunsworth, P. Roushan, B. Chiaro, A. Megrant, J. Kelly, Zijun Chen, K. Satzinger, R. Barends, F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, S. Boixo, D. Buell, B. Burkett, Yu Chen, R. Collins, E. Farhi, A. Fowler, C. Gidney, M. Giustina, R. Graff, M. Harrigan, T. Huang, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, P. Klimov, A. Korotkov, F. Kostritsa, D. Landhuis, E. Lucero, J. McClean, M. McEwen, X. Mi, M. Mohseni, J. Y. Mutus, O. Naaman, M. Neeley, M. Niu, A. Petukhov, C. Quintana, N. Rubin, D. Sank, V. Smelyanskiy, A. Vainsencher, T. C. White, Z. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis. Demonstrating a Continuous Set of Two-Qubit Gates for Near-Term Quantum Algorithms. Phys. Rev. Lett., 125:120504, Sep 2020.Google ScholarGoogle ScholarCross RefCross Ref
  52. B. Kraus and J. I. Cirac. Optimal creation of entanglement using a two-qubit gate. Phys. Rev. A, 63:062309, May 2001.Google ScholarGoogle ScholarCross RefCross Ref
  53. Navin Khaneja, Roger Brockett, and Steffen J. Glaser. Time optimal control in spin systems. Phys. Rev. A, 63:032308, Feb 2001.Google ScholarGoogle ScholarCross RefCross Ref
  54. Marc Grau Davis, Ethan Smith, Ana Tudor, Koushik Sen, Irfan Siddiqi, and Costin Iancu. Heuristics for quantum compiling with a continuous gate set. arXiv preprint arXiv:1912.02727, 2019.Google ScholarGoogle Scholar
  55. Lingling Lao, Prakash Murali, Margaret Martonosi, and Dan Browne. Designing calibration and expressivity-efficient instruction sets for quantum computing. In ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA), pages 846--859, 2021.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Mohammad Javad Dousti, Alireza Shafaei, and Massoud Pedram. Squash: a scalable quantum mapper considering ancilla sharing. In Proceedings of the 24th edition of the great lakes symposium on VLSI, pages 117--122, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Tayebeh Bahreini and Naser Mohammadzadeh. An minlp model for scheduling and placement of quantum circuits with a heuristic solution approach. ACM Journal on Emerging Technologies in Computing Systems (JETC), 12(3):1--20, 2015.Google ScholarGoogle Scholar
  58. Lingling Lao, Bas van Wee, Imran Ashraf, J van Someren, Nader Khammassi, Koen Bertels, and Carmen G Almudever. Mapping of lattice surgery-based quantum circuits on surface code architectures. Quantum Science and Technology, 4(1):015005, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  59. Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems. J. ACM, 23(3):555--565, July 1976.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Fred Glover. Tabu search---part I. ORSA Journal on computing, 1(3):190--206, 1989.Google ScholarGoogle Scholar
  61. Fred Glover. Tabu search---part II. ORSA Journal on computing, 2(1):4--32, 1990.Google ScholarGoogle ScholarCross RefCross Ref
  62. Rainer E Burkard and Franz Rendl. A thermodynamically motivated simulation procedure for combinatorial optimization problems. European Journal of Operational Research, 17(2):169--174, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  63. Yong Li, Panos M Pardalos, and Mauricio GC Resende. A greedy randomized adaptive search procedure for the quadratic assignment problem. Quadratic assignment and related problems, 16:237--261, 1993.Google ScholarGoogle Scholar
  64. Swamit S Tannu and Moinuddin K Qureshi. Not All Qubits Are Created Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, pages 987--999. ACM, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Yongshan Ding, Xin-Chuan Wu, Adam Holmes, Ash Wiseth, Diana Franklin, Margaret Martonosi, and Frederic T Chong. SQUARE: strategic quantum ancilla reuse for modular quantum programs via cost-effective uncomputation. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pages 570--583. IEEE, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Farrokh Vatan and Colin Williams. Optimal quantum circuits for general two-qubit gates. Phys. Rev. A, 69:032315, Mar 2004.Google ScholarGoogle ScholarCross RefCross Ref
  67. G. Vidal and C. M. Dawson. Universal quantum circuit for two-qubit transformations with three controlled-NOT gates. Phys. Rev. A, 69:010301, Jan 2004.Google ScholarGoogle ScholarCross RefCross Ref
  68. Tommy R Jensen and Bjarne Toft. Graph coloring problems, volume 39. John Wiley & Sons, 2011.Google ScholarGoogle Scholar
  69. Nathan Lacroix, Christoph Hellings, Christian Kraglund Andersen, Agustin Di Paolo, Ants Remm, Stefania Lazar, Sebastian Krinner, Graham J. Norris, Mihai Gabureac, Johannes Heinsoo, Alexandre Blais, Christopher Eichler, and Andreas Wallraff. Improving the performance of deep quantum optimization algorithms with continuous gate sets. PRX Quantum, 1(2):110304, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  70. Matthew P Harrigan, Kevin J Sung, Matthew Neeley, Kevin J Satzinger, Frank Arute, Kunal Arya, Juan Atalaya, Joseph C Bardin, Rami Barends, Sergio Boixo, Michael Broughton, Bob B Buckley, David A Buell, Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Sean Demura, Andrew Dunsworth, Daniel Eppens, Austin Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Rob Graff, Steve Habegger, Alan Ho, Sabrina Hong, Trent Huang, L B Ioffe, Sergei V Isakov, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Seon Kim, Paul V Klimov, Alexander N Korotkov, Fedor Kostritsa, David Landhuis, Pavel Laptev, Mike Lindmark, Martin Leib, Orion Martin, John M Martinis, Jarrod R McClean, Matt McEwen, Anthony Megrant, Xiao Mi, Masoud Mohseni, Wojciech Mruczkiewicz, Josh Mutus, Ofer Naaman, Charles Neill, Florian Neukart, Murphy Yuezhen Niu, Thomas E O'Brien, Bryan O'Gorman, Eric Ostby, Andre Petukhov, Harald Putterman, Chris Quintana, Pedram Roushan, Nicholas C Rubin, Daniel Sank, Andrea Skolik, Vadim Smelyanskiy, Doug Strain, Michael Streif, Marco Szalay, Amit Vainsencher, Theodore White, Z Jamie Yao, Ping Yeh, Adam Zalcman, Leo Zhou, Hartmut Neven, Dave Bacon, Erik Lucero, Edward Farhi, and Ryan Babbush. Quantum approximate optimization of non-planar graph problems on a planar superconducting processor. Nature physics, 17(3):332--336, February 2021.Google ScholarGoogle ScholarCross RefCross Ref
  71. Quantum AI team and collaborators. ReCirq, October 2020.Google ScholarGoogle Scholar
  72. Cirq Developers. Cirq, May 2021. See full list of authors on Github: https://github.com/quantumlib/Cirq/graphs/contributors.Google ScholarGoogle Scholar
  73. Rainer E Burkard, Eranda Cela, Panos M Pardalos, and Leonidas S Pitsoulis. The quadratic assignment problem. In Handbook of combinatorial optimization, pages 1713--1809. Springer, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  74. Chi-Fang Chen, Hsin-Yuan Huang, Richard Kueng, and Joel A Tropp. Quantum simulation via randomized product formulas: Low gate complexity with accuracy guarantees. arXiv preprint arXiv:2008.11751, 2020.Google ScholarGoogle Scholar
  75. Yingkai Ouyang, David R White, and Earl T Campbell. Compilation by stochastic Hamiltonian sparsification. Quantum, 4:235, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  76. Paul K Faehrmann, Mark Steudtner, Richard Kueng, Maria Kieferova, and Jens Eisert. Randomizing multi-product formulas for improved Hamiltonian simulation. arXiv preprint arXiv:2101.07808, 2021.Google ScholarGoogle Scholar
  77. Ewout van den Berg and Kristan Temme. Circuit optimization of Hamiltonian simulation by simultaneous diagonalization of Pauli clusters. Quantum, 4:322, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  78. Alexander Cowtan, Will Simmons, and Ross Duncan. A generic compilation strategy for the unitary coupled cluster ansatz. arXiv preprint arXiv:2007.10515, 2020.Google ScholarGoogle Scholar
  79. Matthew B Hastings, Dave Wecker, Bela Bauer, and Matthias Troyer. Improving quantum algorithms for quantum chemistry. arXiv preprint arXiv:1403.1539, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Kaiwen Gui, Teague Tomesh, Pranav Gokhale, Yunong Shi, Frederic T Chong, Margaret Martonosi, and Martin Suchara. Term grouping and travelling salesperson for digital quantum simulation. arXiv preprint arXiv:2001.05983, 2020.Google ScholarGoogle Scholar
  81. Alexander Cowtan, Silas Dilkes, Ross Duncan, Will Simmons, and Seyon Sivarajah. Phase gadget synthesis for shallow circuits. arXiv preprint arXiv:1906.01734, 2019.Google ScholarGoogle Scholar
  82. Arianne Meijer-van de Griend and Ross Duncan. Architecture-aware synthesis of phase polynomials for NISQ devices. arXiv preprint arXiv:2004.06052, 2020.Google ScholarGoogle Scholar
  83. Prakash Murali, David C McKay, Margaret Martonosi, and Ali Javadi-Abhari. Software Mitigation of Crosstalk on Noisy Intermediate-Scale Quantum Computers. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, pages 1001--1016, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Ian D. Kivlichan, Jarrod McClean, Nathan Wiebe, Craig Gidney, Alán Aspuru-Guzik, Garnet Kin-Lic Chan, and Ryan Babbush. Quantum simulation of electronic structure with linear depth and connectivity. Phys. Rev. Lett., 120:110501, Mar 2018.Google ScholarGoogle ScholarCross RefCross Ref
  85. Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett., 119:180509, Nov 2017.Google ScholarGoogle ScholarCross RefCross Ref
  86. Ying Li and Simon C. Benjamin. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X, 7:021050, Jun 2017.Google ScholarGoogle ScholarCross RefCross Ref
  87. Sergey Bravyi, Sarah Sheldon, Abhinav Kandala, David C. Mckay, and Jay M. Gambetta. Mitigating measurement errors in multiqubit experiments. Phys. Rev. A, 103:042605, Apr 2021.Google ScholarGoogle ScholarCross RefCross Ref
  88. Swamit S Tannu and Moinuddin K Qureshi. Mitigating measurement errors in quantum computers by exploiting state-dependent bias. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, pages 279--290, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. 2QAN: a quantum compiler for 2-local qubit hamiltonian simulation algorithms

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        ISCA '22: Proceedings of the 49th Annual International Symposium on Computer Architecture
        June 2022
        1097 pages
        ISBN:9781450386104
        DOI:10.1145/3470496

        Copyright © 2022 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 11 June 2022

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        ISCA '22 Paper Acceptance Rate67of400submissions,17%Overall Acceptance Rate543of3,203submissions,17%

        Upcoming Conference

        ISCA '24

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader