skip to main content
10.1145/3470496.3527428acmconferencesArticle/Chapter ViewAbstractPublication PagesiscaConference Proceedingsconference-collections
research-article

Geyser: a compilation framework for quantum computing with neutral atoms

Published: 11 June 2022 Publication History

Abstract

Compared to widely-used superconducting qubits, neutral-atom quantum computing technology promises potentially better scalability and flexible arrangement of qubits to allow higher operation parallelism and more relaxed cooling requirements. The high performance computing (HPC) and architecture community is beginning to design new solutions to take advantage of neutral-atom quantum architectures and overcome its unique challenges.
We propose Geyser, the first work to take advantage of the multi-qubit gates natively supported by neutral-atom quantum computers by appropriately mapping quantum circuits to three-qubit-friendly physical arrangement of qubits. Then, Geyser creates multiple logical blocks in the quantum circuit to exploit quantum parallelism and reduce the number of pulses needed to realize physical gates. These circuit blocks elegantly enable Geyser to compose equivalent circuits with three-qubit gates, even when the original program does not have any multi-qubit gates. Our evaluation results show Geyser reduces the number of operation pulses by 25%-90% and improves the algorithm's output fidelity by 25%-60% points across different algorithms.

References

[1]
C S Adams, J D Pritchard, and J P Shaffer. 2019. Rydberg Atom Quantum Technologies. (July 2019). arXiv:1907.09231 [physics.atom-ph]
[2]
Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello, Yael Ben-Haim, David Bucher, Francisco Jose Cabrera-Hernández, Jorge Carballo-Franquis, Adrian Chen, Chun-Fu Chen, Jerry M. Chow, Antonio D. Córcoles-Gonzales, Abigail J. Cross, Andrew Cross, Juan Cruz-Benito, Chris Culver, Salvador De La Puente González, Enrique De La Torre, Delton Ding, Eugene Dumitrescu, Ivan Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Albert Frisch, Andreas Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-Mosquera, Donny Greenberg, Ikko Hamamura, Vojtech Havlicek, Joe Hellmers, Łukasz Herok, Hiroshi Horii, Shaohan Hu, Takashi Imamichi, Toshinari Itoko, Ali Javadi-Abhari, Naoki Kanazawa, Anton Karazeev, Kevin Krsulich, Peng Liu, Yang Luh, Yunho Maeng, Manoel Marques, Francisco Jose Martín-Fernández, Douglas T. McClure, David McKay, Srujan Meesala, Antonio Mezzacapo, Nikolaj Moll, Diego Moreda Rodríguez, Giacomo Nannicini, Paul Nation, Pauline Ollitrault, Lee James O'Riordan, Hanhee Paik, Jesús Pérez, Anna Phan, Marco Pistoia, Viktor Prutyanov, Max Reuter, Julia Rice, Abdón Rodríguez Davila, Raymond Harry Putra Rudy, Mingi Ryu, Ninad Sathaye, Chris Schnabel, Eddie Schoute, Kanav Setia, Yunong Shi, Adenilton Silva, Yukio Siraichi, Seyon Sivarajah, John A. Smolin, Mathias Soeken, Hitomi Takahashi, Ivano Tavernelli, Charles Taylor, Pete Taylour, Kenso Trabing, Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe Vuillot, Jonathan A. Wildstrom, Jessica Wilson, Erick Winston, Christopher Wood, Stephen Wood, Stefan Wörner, Ismail Yunus Akhalwaya, and Christa Zoufal. 2019. Qiskit: An Open-source Framework for Quantum Computing.
[3]
Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. 2019. Quantum Supremacy using a Programmable Superconducting Processor. Nature 574, 7779 (2019), 505--510.
[4]
Jonathan M Baker, Andrew Litteken, Casey Duckering, Henry Hoffmann, Hannes Bernien, and Frederic T Chong. 2021. Exploiting Long-Distance Interactions and Tolerating Atom Loss in Neutral Atom Quantum Architectures. In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). 818--831.
[5]
Daniel Barredo, Vincent Lienhard, Sylvain de Léséleuc, Thierry Lahaye, and Antoine Browaeys. 2018. Synthetic Three-Dimensional Atomic Structures Assembled Atom by Atom. Nature 561, 7721 (Sept. 2018), 79--82.
[6]
Lindsay Bassman, Connor Powers, and Wibe A de Jong. 2021. ArQTiC: A Full-Stack Software Package for Simulating Materials on Quantum Computers. arXiv preprint arXiv:2106.04749 (2021).
[7]
Ethan Bernstein and Umesh Vazirani. 1997. Quantum Complexity Theory. SIAM Journal on computing 26, 5 (1997), 1411--1473.
[8]
Rigetti Computing. 2019. Pyquil documentation. URL http://pyquil.readthedocs.io/en/latest (2019).
[9]
Steven A Cuccaro, Thomas G Draper, Samuel A Kutin, and David Petrie Moulton. 2004. A New Quantum Ripple-Carry Addition Circuit. arXiv preprint quantph/0410184 (2004).
[10]
Megan L Dahlhauser and Travis S Humble. 2021. Modeling Noisy Quantum Circuits using Experimental Characterization. Physical Review A 103, 4 (2021), 042603.
[11]
Casey Duckering, Jonathan M Baker, Andrew Litteken, and Frederic T Chong. 2021. Orchestrated Trios: Compiling for Efficient Communication in Quantum Programs with 3-Qubit Gates. In Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 375--385.
[12]
Edward Farhi and Aram W Harrow. 2016. Quantum Supremacy through the Quantum Approximate Optimization Algorithm. arXiv preprint arXiv:1602.07674 (2016).
[13]
A Fuhrmanek, R Bourgain, Yvan RP Sortais, and Antoine Browaeys. 2011. Free-space lossless state detection of a single trapped atom. Physical review letters 106, 13 (2011), 133003.
[14]
Alexei Gilchrist, Nathan K Langford, and Michael A Nielsen. 2005. Distance Measures to Compare Real and Ideal Quantum Processes. Physical Review A 71, 6 (2005), 062310.
[15]
T M Graham, M Kwon, B Grinkemeyer, Z Marra, X Jiang, M T Lichtman, Y Sun, M Ebert, and M Saffman. 2019. Rydberg-Mediated Entanglement in a Two-Dimensional Neutral Atom Qubit Array. Phys. Rev. Lett. 123, 23 (Dec. 2019), 230501.
[16]
Andrew Hancock, Austin Garcia, Jacob Shedenhelm, Jordan Cowen, and Calista Carey. 2019. Cirq: A Python Framework for Creating, Editing, and Invoking Quantum Circuits. URL https://github.com/quantumlib/Cirq (2019).
[17]
Loic Henriet, Lucas Beguin, Adrien Signoles, Thierry Lahaye, Antoine Browaeys, Georges-Olivier Reymond, and Christophe Jurczak. 2020. Quantum Computing with Neutral Atoms. (June 2020). arXiv:2006.12326 [quant-ph]
[18]
Toshinari Itoko, Rudy Raymond, Takashi Imamichi, and Atsushi Matsuo. 2020. Optimization of Quantum Circuit Mapping using Gate Transformation and Commutation. Integration 70 (2020), 43--50.
[19]
Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2016. SciPy: Open Source Scientific Tools for Python, 2001.
[20]
Sumeet Khatri, Ryan LaRose, Alexander Poremba, Lukasz Cincio, Andrew T Sornborger, and Patrick J Coles. 2019. Quantum-Assisted Quantum Compiling. Quantum 3 (2019), 140.
[21]
Nathan Killoran, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy, and Christian Weedbrook. 2019. Strawberry fields: A software platform for photonic quantum computing. Quantum 3 (2019), 129.
[22]
Alexei Yu Kitaev, Alexander Shen, Mikhail N Vyalyi, and Mikhail N Vyalyi. 2002. Classical and Quantum Computation. Number 47. American Mathematical Soc.
[23]
Vadym Kliuchnikov, Alex Bocharov, and Krysta M Svore. 2014. Asymptotically Optimal Topological Quantum Compiling. Physical review letters 112, 14 (2014), 140504.
[24]
Harry Levine, Alexander Keesling, Ahmed Omran, Hannes Bernien, Sylvain Schwartz, Alexander S Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D Lukin. 2018. High-Fidelity Control and Entanglement of Rydberg-Atom Qubits. Phys. Rev. Lett. 121, 12 (Sept. 2018), 123603.
[25]
Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Tout T Wang, Sepehr Ebadi, Hannes Bernien, Markus Greiner, Vladan Vuletić, Hannes Pichler, and Mikhail D Lukin. 2019. Parallel Implementation of High-Fidelity Multi-Qubit Gates with Neutral Atoms. (Aug. 2019). arXiv:1908.06101 [quant-ph]
[26]
Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. ACM, 1001--1014.
[27]
Dmitri Maslov and Yunseong Nam. 2018. Use of Global Interactions in Efficient Quantum Circuit Constructions. New Journal of Physics 20, 3 (2018), 033018.
[28]
Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. 2016. The Theory of Variational Hybrid Quantum-Classical Algorithms. New Journal of Physics 18, 2 (2016), 023023.
[29]
Harold J Metcalf and Peter van der Straten. 2003. Laser Cooling and Trapping of Atoms. JOSA B 20, 5 (2003), 887--908.
[30]
Victor Namias. 1980. The Fractional order Fourier Transform and its Application to Quantum Mechanics. IMA Journal of Applied Mathematics 25, 3 (1980), 241--265.
[31]
Paul Nation, Hanhee Paik, Andrew Cross, and Zaira Nazario. 2021. The IBM Quantum Heavy Hex Lattice. https://research.ibm.com/blog/heavy-hex-lattice Accessed: 2021-11-22.
[32]
Tirthak Patel, Abhay Potharaju, Baolin Li, Rohan Roy, and Devesh Tiwari. 2020. Experimental Evaluation of NISQ Quantum Computers: Error Measurement, Characterization, and Implications. In 2020 SC20: International Conference for High Performance Computing, Networking, Storage and Analysis (SC). IEEE Computer Society, 636--650.
[33]
Gerard Pelegrí, Andrew J Daley, and Jonathan D Pritchard. 2021. High-Fidelity Multiqubit Rydberg Gates via Two-Photon Adiabatic Rapid Passage. arXiv preprint arXiv:2112.13025 (2021).
[34]
C J Picken, R Legaie, K McDonnell, and J D Pritchard. 2018. Entanglement of Neutral-atom Qubits with Long Ground-Rydberg Coherence Times. Quantum Sci. Technol. 4, 1 (Dec. 2018), 015011.
[35]
M Saffman, II Beterov, A Dalal, EJ Páez, and BC Sanders. 2020. Symmetric Rydberg Controlled-Z Gates with Adiabatic Pulses. Physical Review A 101, 6 (2020), 062309.
[36]
Kemal H Sahin and Amy R Ciric. 1998. A Dual Temperature Simulated Annealing Approach for Solving Bilevel Programming Problems. Computers & chemical engineering 23, 1 (1998), 11--25.
[37]
Xiao-Feng Shi. 2020. Single-site Rydberg Addressing in 3D Atomic Arrays for Quantum Computing with Neutral Atoms. J. Phys. B At. Mol. Opt. Phys. 53, 5 (Jan. 2020), 054002.
[38]
N Šibalić, J D Pritchard, C S Adams, and K J Weatherill. 2016. ARC: An Open-Source Library for Calculating Properties of Alkali Rydberg Atoms. (Dec. 2016). arXiv:1612.05529 [physics.atom-ph]
[39]
Robert R Tucci. 2005. An introduction to Cartan's KAK decomposition for QC programmers. arXiv preprint quant-ph/0507171 (2005).
[40]
Yang Wang, Aishwarya Kumar, Tsung-Yao Wu, and David S Weiss. 2016. Universal Gates based on Targeted Phase Shifts in a 3D Neutral Atom Array. (Jan. 2016). arXiv:1601.03639 [quant-ph]
[41]
Robert Wille, Lukas Burgholzer, and Alwin Zulehner. 2019. Mapping Quantum Circuits to IBM QX Architectures Using the Minimal Number of SWAP and H Operations. In Proceedings of the 56th Annual Design Automation Conference 2019. ACM, 142.
[42]
Robert Wille, Oliver Keszocze, Marcel Walter, Patrick Rohrs, Anupam Chattopadhyay, and Rolf Drechsler. 2016. Look-ahead schemes for nearest neighbor optimization of 1D and 2D quantum circuits. In 2016 21st Asia and South Pacific design automation conference (ASP-DAC). IEEE, 292--297.
[43]
Robert Wille, Aaron Lye, and Rolf Drechsler. 2014. Exact reordering of circuit lines for nearest neighbor quantum architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 33, 12 (2014), 1818--1831.
[44]
T Xia, M Lichtman, K Maller, A W Carr, M J Piotrowicz, L Isenhower, and M Saffman. 2015. Randomized Benchmarking of Single-qubit Gates in a 2D Array of Neutral-atom Qubits. Phys. Rev. Lett. 114, 10 (March 2015), 100503.

Cited By

View all
  • (2024)Multi-controlled Phase Gate Synthesis with ZX-calculus applied to Neutral Atom HardwareElectronic Proceedings in Theoretical Computer Science10.4204/EPTCS.406.5406(96-116)Online publication date: 12-Aug-2024
  • (2024)Compiling Quantum Circuits for Dynamically Field-Programmable Neutral Atoms Array ProcessorsQuantum10.22331/q-2024-03-14-12818(1281)Online publication date: 14-Mar-2024
  • (2024)Modeling and Simulating Rydberg Atom Quantum Computers for Hardware-Software Co-design with PachinQoProceedings of the ACM on Measurement and Analysis of Computing Systems10.1145/37004218:3(1-25)Online publication date: 10-Dec-2024
  • Show More Cited By

Index Terms

  1. Geyser: a compilation framework for quantum computing with neutral atoms

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ISCA '22: Proceedings of the 49th Annual International Symposium on Computer Architecture
    June 2022
    1097 pages
    ISBN:9781450386104
    DOI:10.1145/3470496
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    In-Cooperation

    • IEEE CS TCAA: IEEE CS technical committee on architectural acoustics

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 June 2022

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. NISQ computing
    2. neutral atoms
    3. quantum compiling
    4. quantum computing
    5. quantum software
    6. rydberg atoms

    Qualifiers

    • Research-article

    Conference

    ISCA '22
    Sponsor:

    Acceptance Rates

    ISCA '22 Paper Acceptance Rate 67 of 400 submissions, 17%;
    Overall Acceptance Rate 543 of 3,203 submissions, 17%

    Upcoming Conference

    ISCA '25

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)294
    • Downloads (Last 6 weeks)25
    Reflects downloads up to 15 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Multi-controlled Phase Gate Synthesis with ZX-calculus applied to Neutral Atom HardwareElectronic Proceedings in Theoretical Computer Science10.4204/EPTCS.406.5406(96-116)Online publication date: 12-Aug-2024
    • (2024)Compiling Quantum Circuits for Dynamically Field-Programmable Neutral Atoms Array ProcessorsQuantum10.22331/q-2024-03-14-12818(1281)Online publication date: 14-Mar-2024
    • (2024)Modeling and Simulating Rydberg Atom Quantum Computers for Hardware-Software Co-design with PachinQoProceedings of the ACM on Measurement and Analysis of Computing Systems10.1145/37004218:3(1-25)Online publication date: 10-Dec-2024
    • (2024)Hybrid Circuit Mapping: Leveraging the Full Spectrum of Computational Capabilities of Neutral Atom Quantum ComputersProceedings of the 61st ACM/IEEE Design Automation Conference10.1145/3649329.3655959(1-6)Online publication date: 23-Jun-2024
    • (2024)Elivagar: Efficient Quantum Circuit Search for ClassificationProceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 210.1145/3620665.3640354(336-353)Online publication date: 27-Apr-2024
    • (2024)Parallax: A Compiler for Neutral Atom Quantum Computers under Hardware ConstraintsProceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis10.1109/SC41406.2024.00079(1-17)Online publication date: 17-Nov-2024
    • (2024)Circuit Decompositions and Scheduling for Neutral Atom Devices with Limited Local Addressability2024 IEEE International Conference on Quantum Computing and Engineering (QCE)10.1109/QCE60285.2024.00105(854-865)Online publication date: 15-Sep-2024
    • (2024)Lightcone bounds for quantum circuit mapping via uncomplexitynpj Quantum Information10.1038/s41534-024-00909-710:1Online publication date: 9-Nov-2024
    • (2023)SpinQ: Compilation Strategies for Scalable Spin-Qubit ArchitecturesACM Transactions on Quantum Computing10.1145/36244845:1(1-36)Online publication date: 16-Dec-2023
    • (2023)GRAPHINE: Enhanced Neutral Atom Quantum Computing using Application-Specific Rydberg Atom ArrangementProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1145/3581784.3607032(1-15)Online publication date: 12-Nov-2023
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media