skip to main content
10.1145/3471274.3471277acmotherconferencesArticle/Chapter ViewAbstractPublication Pageshp3cConference Proceedingsconference-collections
Article

A New Precipitation Nowcasting method Based on Extrapolation Technique and Random Forest

Published:26 August 2021Publication History

ABSTRACT

The Precipitation Nowcasting is critical to the safe of region. Tradition extrapolate-based precipitation nowcasting used the simple extrapolation techniques, which accuracy decreased quickly after 30 minutes. In this study, a new precipitation forecasting scheme named as RF-SPLK has been developed that blends the extrapolation nowcasting method with machine learning technique. The proposed method can improve the accuracy of precipitation forecasting within the 2 h lead time. The experiments show that the statistical skill scores better than the compareable nowcasting methods and the forecast image is more continuity and close to the observed.

References

  1. Ayzel, G., Heistermann, M., Sorokin, A., Nikitin, O. and Lukyanova, O. (2019) All convolutional neural networks for radar-based precipitation nowcasting. Procedia Computer Science 150, 186-192.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Behrangi, A., Khakbaz, B., Jaw, T.C., AghaKouchak, A., Hsu, K. and Sorooshian, S. (2011) Hydrologic evaluation of satellite precipitation products over a mid-size basin. Journal of Hydrology 397(3-4), 225-237.Google ScholarGoogle ScholarCross RefCross Ref
  3. Bellon, A., Lovejoy, S. and Austin, G. (1980) Combining Satellite and Radar Data for the Short-Range Forecasting of Precipitation.Google ScholarGoogle ScholarCross RefCross Ref
  4. Bento, A.P., Gaulton, A., Hersey, A., Bellis, L.J., Chambers, J., Davies, M., Kruger, F.A., Light, Y., Mak, L. and Mcglinchey, S. (2002) Classification and Regression by randomForest. R News 23(23).Google ScholarGoogle Scholar
  5. Berenguer, M., M. Surcel, I. Zawadzki, M. Xue & F. Kong, 2012. The Diurnal Cycle of Precipitation from Continental Radar Mosaics and Numerical Weather Prediction Models. Part II: Intercomparison among Numerical Models and with Nowcasting. Monthly Weather Review 140(8):2689-2705 doi:10.1175/mwr-d-11-00181.1.Google ScholarGoogle ScholarCross RefCross Ref
  6. Bonazza, P., J. Miteran, D. Ginhac & J. Dubois, 2019. Traditional Machine Learning or Deep Learning Methods for Embedded Computer Vision Study on Biometric Application. Biostatistics and Biometrics Open Access Journal 9.Google ScholarGoogle Scholar
  7. D. Lucas, B. and Kanade, T. (1981) An iterative technique of image registration and its application to stereo.Google ScholarGoogle Scholar
  8. Das, S., Chakraborty, R. and Maitra, A. (2017) A random forest algorithm for nowcasting of intense precipitation events. Advances in Space Research 60(6), 1271-1282.Google ScholarGoogle ScholarCross RefCross Ref
  9. Franch, G., D. Nerini, M. Pendesini, L. Coviello, G. Jurman & C. Furlanello, 2020. Precipitation Nowcasting with Orographic Enhanced Stacked Generalization: Improving Deep Learning Predictions on Extreme Events. Atmosphere 11(3) doi:10.3390/atmos11030267.Google ScholarGoogle Scholar
  10. Li, L., He, Z., Chen, S., Mai, X., Zhang, A., Hu, B., Li, Z. and Tong, X. (2018) Subpixel-Based Precipitation Nowcasting with the Pyramid Lucas–Kanade Optical Flow Technique. Atmosphere 9, 260.Google ScholarGoogle ScholarCross RefCross Ref
  11. Liu, Y., Xi, D.-G., Li, Z.-L. and Hong, Y. (2015) A new methodology for pixel-quantitative precipitation nowcasting using a pyramid Lucas Kanade optical flow approach. Journal of Hydrology 529, 354-364.Google ScholarGoogle ScholarCross RefCross Ref
  12. Mandapaka, P.V., Germann, U., Panziera, L., Hering, A., 2012. Can Lagrangian Extrapolation of Radar Fields Be Used for Precipitation Nowcasting over Complex Alpine Orography? Weather and Forecasting, 27(1): 28-49. DOI:10.1175/waf-d-11-00050.1Google ScholarGoogle ScholarCross RefCross Ref
  13. McGovern, A. , 2011. Using spatiotemporal relational random forests to improve our understanding of severe weather processes. Statistical Analysis and Data Mining, 4: 407-429. DOI:10.1002/sam.10128Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. McGovern, A. , 2011. Using spatiotemporal relational random forests to improve our understanding of severe weather processes. Statistical Analysis and Data Mining, 4: 407-429. DOI:10.1002/sam.10128Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Shi, X., Z. Chen, H. Wang, D.-Y. Yeung, W. K. Wong & W.-c. Woo, 2015. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting.Google ScholarGoogle Scholar
  16. SVETNIK, V. (2003) Random forest: a classification and regression tool for compound classification and QSAR modeling. Journal of Chemical Information & Computer Sciences 43.Google ScholarGoogle Scholar
  17. Tuttle, J. and Gall, R. (1999) A Single-Radar Technique for Estimating the Winds in Tropical Cyclones.Google ScholarGoogle ScholarCross RefCross Ref
  18. Wang, G., W. K. Wong, Y. Hong, L. Liu, J. Dong and M. Xue (2014). "Improvement of forecast skill for severe weather by merging radar-based extrapolation and storm-scale NWP corrected forecast." Atmospheric Research 154.Google ScholarGoogle Scholar
  19. Williams, J.K. (2014) Using random forests to diagnose aviation turbulence. Mach Learn 95(1), 51-70.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Wilson, J., E. E. Ebert, T. R. Saxen, R. Roberts, C. K. Mueller, M. Sleigh, C. Pierce and A. Seed (2004). "Sydney 2000 Forecast Demonstration Project: Convective Storm Nowcasting." Weather and Forecasting - WEATHER FORECAST 19: 131-150.Google ScholarGoogle ScholarCross RefCross Ref
  21. Xie, P., X. Li, X. Ji, X. Chen & Y. Ye, 2020. An Energy-Based Generative Adversarial Forecaster for Radar Echo Map Extrapolation. IEEE Geoscience and Remote Sensing Letters PP(99):1-5.Google ScholarGoogle Scholar
  22. Zahraei, A., K.-l. Hsu, S. Sorooshian, J. J. Gourley, Y. Hong and A. Behrangi (2013). "Short-term quantitative precipitation forecasting using an object-based approach." Journal of Hydrology 483: 1-15.Google ScholarGoogle ScholarCross RefCross Ref
  23. Zhang, J.; Howard, K.; Langston, C.; Kaney, B.; Qi, Y.; Tang, L.; Grams, H.; Wang, Y.; Cocks, S.; Martinaitis, S., Multi-radar multi-sensor (mrms) quantitative precipitation estimation: Initial operating capabilities. Bulletin of the American Meteorological Society 2016, 97, 621-638. DOI:10.1175/BAMS-D-14-00174.1.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    HP3C '21: Proceedings of the 5th International Conference on High Performance Compilation, Computing and Communications
    June 2021
    71 pages
    ISBN:9781450389648
    DOI:10.1145/3471274

    Copyright © 2021 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 26 August 2021

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • Article
    • Research
    • Refereed limited
  • Article Metrics

    • Downloads (Last 12 months)7
    • Downloads (Last 6 weeks)0

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format