
10 COMMUNICATIONS OF THE ACM | SEPTEMBER 2021 | VOL. 64 | NO. 9

Follow us on Twitter at http://twitter.com/blogCACM

The Communications website, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

System conversions represent a
third distinct type of development. The
project scope now includes all of the
effort of an initial software release plus
an entirely new set of complexities.
The prior system is often caught in a
downward spiral: technical constraints
may exist that make upgrades difficult,
which in turn can diminish the orga-
nizational will to improve the system,
which in turn reduces system perfor-
mance and viability. The prior sys-
tem, however, must be kept alive long
enough to transition the functionality
as well as support the data conversion
to a new platform. This can become
an anxiety-inducing software “race
against time.” As an example of life im-
itating art, the 1994 action movie Speed
with Keanu Reeves offers some surpris-
ingly insightful lessons and how this
situation can be managed.

Lesson #1: The Bus
Couldn’t Slow Down
In the movie, a transit bus is wired with
a bomb and cannot go below 50 MPH
without dire consequences. From a

software standpoint, if an existing sys-
tem is highly utilized and still running
critical functions but not well main-
tained, it can feel like this. There may
be multiple factors all pulling on the
existing system to slow it down: an out-
dated and non-scalable architecture,
an outdated codebase, and perhaps
even a lack of developers to support the
aforementioned items. Ignoring the
current system, though, only makes
the problem worse.

Lesson #2: A Second
Bus Was Required
To save the initial bus, a second bus
had to be obtained. In the software
world, the “second bus” represents
the new system and the development
team to create that system. This could
either be managed as one team with
two major responsibilities (support
old system, build new system) or two
teams, but one thing is clear: there
is effectively twice as much work. A
key mistake of system conversion de-
velopment is only budgeting for the
“new” development.

Doug Meil
The Art of Speedy
Systems Conversions
https://bit.ly/2TpmcsG
June 1, 2021
Building a software sys-

tem de novo is the baseline way that
software engineering is taught and un-
derstood. Use cases are identified, ar-
chitectures and patterns are designed,
and then software is implemented and
deployed. Users are onboarded. This
kind of green-field development can
be exhilarating opportunity to create
anew. Upgrading an existing system is a
second and more frequent type of devel-
opment as for any given system there is
only one initial release but many subse-
quent releases. While upgrades primar-
ily focus on incremental improvements,
it is arguably a more complex case as up-
grades are primary risks of outages and
functional regressions, whereas with
the baseline case there is nothing else
in place at the time of initial release.

But what if there is a prior opera-
tional system in place? Specifically,
one that is being replaced.

Finding the Art in
Systems Conversions,
Naming
Doug Meil considers a third distinct type of development,
while Mario Antoine Aoun ponders alternate names for ACM.

DOI:10.1145/3474351 http://cacm.acm.org/blogs/blog-cacm

http://dx.doi.org/10.1145/3474351
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3474351&domain=pdf&date_stamp=2021-08-24

SEPTEMBER 2021 | VOL. 64 | NO. 9 | COMMUNICATIONS OF THE ACM 11

blog@cacm

Lesson #3: The Second Bus Was
Accelerated to Catch the First Bus
Achieving functional parity is one of
the most difficult aspects of system
conversions especially when the first
bus has a 100-mile head start, meta-
phorically speaking. The “chasing
system” needs a long-enough runway
both in terms of time and budget,
complicated by the fact that the prior
system may still continue to evolve at
the same time and not be a static tar-
get. Even the most well-intentioned
projects can get tripped up on this.
This type of development could take
multiple fiscal quarters or years, and
one of the biggest issues is execu-
tive expectation management.

Lesson #4: The Passengers
Are Rescued
In the movie, the passengers are res-
cued in dramatic fashion, and anyone
that has lived through a large system
conversion will recognize this is pretty
much what it feels like. To rescue the
passengers, both buses must be operat-
ing not just at high speed, but also close
proximity, re-emphasizing the impor-
tance of feature parity. Having a second
bus running 50 MPH but 5 miles dis-
tant and receding doesn’t help.

Additionally, software to assist in
conversions—particularly large-scale
data migrations—is required and is a
special art. Such software still needs
to adhere to software engineering best
practices, but also needs to be fast (as
conversion windows are always under
a time crunch), explainable (as conver-
sions are always being asked to explain
exactly what happened), and automat-
able (as the best conversions are always
heavily practiced).

The management of conversions is
an important aspect of software engi-
neering and not for the faint of heart.
The process represents the bridge
from the old to the new.

Lesson #5: The First Bus Was Retired
In the movie, the first bus exploded
spectacularly after the passengers
were rescued. In real life, such kinetic
outcomes are not generally desirable.
Shutdown processes informed by con-
tractual or regulatory provisions are
important considerations, such as sav-
ing the existing system state for a re-
quired period of time and potentially

leaving the system online in a read-
only state. If a system state is saved as
a backup, confirming that the backup
can actually be restored is advised.

Conclusion
System conversions are a hard prob-
lem and will be ever-present in the
software world as today’s blue-sky de-
velopment efforts become tomorrow’s
legacy code. Reasons for system-rot are
myriad: technological obsolescence of
frameworks or languages are one set
of causes, but more than a few systems
with reasonably current architectures
have been undercut by boom-and-bust
budgeting behaviors as systems are
deployed with an enthusiastic initial
release and then lay fallow. Technology
leaders must actively manage every sys-
tem in a portfolio. It’s a lot of work to
do this, but the alternative is worse.

Mario Antoine Aoun
The Name Game
https://bit.ly/3eYRBKN
May 19, 2021
There was a recent dis-
cussion in Communi-

cations’ Letters to the Editor section
regarding a name change for ACM. Ed-
itor-in-Chief Andrew A. Chien even en-
couraged sending him ideas or sugges-
tions for new ways to rethink the letters
A-C-M. I, too, thought of an interesting
name change for ACM, but after care-
ful consideration, I realized I adore
the current name for its longstanding
value and history.

Concerning previous suggestions
made by others (see Communications
June 2020 and September 2020), we
must be careful that our association
is not dedicated only to its registered
members. That is, it is dedicated for
advancing computing machinery as
science and profession, and not just for
members contributing to its mission
or benefitting from it. For instance, ar-
ticles are published in Communications
or other ACM periodicals by authors
who are not ACM members. Also, peo-
ple (like my lovely wife, for instance)
may read ACM proceedings or attend
ACM conferences with attendees who
are not members of the association.

I liked Andrew Chien’s comment
concerning name change and the
idea of recursion. For that reason, I
suggest the following list of poten-

tial substitutions for Association for
Computing Machinery:

 ˲ Association of Computing Minds
 ˲ Association for Computing Minds
 ˲ Association for Computing Minds

and Machinery
 ˲ Association of Computing Minds

for Computing Machines
 ˲ Association of Computing Minds

for All Computing Machines
My personal favorite is Association

for Computing Minds because it encap-
sulates many meanings and its hold
on ACM’s mission is twofold: it works
toward the advancement of comput-
ing in terms of machinery, and it works
toward the advancement of computing
for scientists and professionals (as per
ACM’s motto, “Advancing Computing
as a Science & Profession”). Besides, it
reminds us of Turing’s paper “Comput-
ing Machinery and Intelligence,” thus
it implicitly offers tribute to him and
explicitly to the evolution of computers
while highlighting the mind and intel-
ligence (natural and artificial).

What is interesting is ‘Computing
Minds’ can refer to both a human and
a computing machine. On one side, it
gives legacy to the evolution of comput-
ers from their early invention as pure
mechanical programmable calculators,
as well as today’s intelligent decision
makers and knowledge discoverers. On
the other side, it inspires programmers,
software engineers, database design-
ers, and computer scientists by calling
them ‘computing minds’ as they create
computing solutions by transforming
thoughts into computing codes. In this
way, we elevate ‘machinery’ to ‘mind,’
and at the same time we considered ev-
ery person interested in this stuff as a
computing mind, too.

Moreover, ‘Association for Comput-
ing Minds’ is new, novel, and unusual!

Still, as I said at the outset, I still
adore ‘Association for Computing Ma-
chinery’ for its originality, value, and
history.

What do you think?

Doug Meil is a software architect at Ontada. He also
founded the Cleveland Big Data Meetup in 2010.
Mario Antoine Aoun is an ACM Professional member
who has been a Reviewer for ACM Computing Reviews
since 2006. He has 25 years of computer programming
experience and holds a Ph.D. in Cognitive Informatics
from the Université du Québec à Montréal. His main
research interest is memory modelling based on chaos
theory and spiking neurons.

© 2021 ACM 0001-0782/21/9 $15.00

