skip to main content
research-article

Biofeedback Methods in Entertainment Video Games: A Review of Physiological Interaction Techniques

Published: 06 October 2021 Publication History

Abstract

The area of biofeedback interaction has grown over recent years, thanks to the release of more affordable and reliable sensor technology, and the accessibility offered by modern game development tools. This article presents a systematic literature review focusing on how different biofeedback interaction methods have been used for entertainment purposes in video games, between 2008 and 2020. It divides previous contributions in terms of a proposed interaction classification criteria and five different biofeedback methods (with a sixth category combining them): electroencephalography, electrocardiography, eye tracking, electrodermal activity, electromyography, and multi-modal interaction. The review describes the properties, sensor technologies, and the type of data gathered for every included biofeedback method, and presents their respective interaction techniques. It summarizes a set of opportunities and challenges for each included method, based on the results from previous work, and discusses these findings. It also analyzes how these interaction techniques are distributed between different common game genres. The review is beneficial for people interested in biofeedback methods and their potential use for novel interaction techniques in future video games.

References

[1]
Tobii Technology AB. 2014. Tobii X2--60 Eye Tracker User's manual. https://www.tobiipro.com/siteassets/tobii-pro/usermanuals/tobii-pro-x2--60-eye-tracker-user-manual.pdf/?v=1.0.3
[2]
Ernest Adams. 2013. Fundamentals of Game Design, Third Edition. New Riders.
[3]
M. R. Ahsan, M. I. Ibrahimy, and O. O. Khalifa. 2009. EMG signal classification for human computer interaction: A review. European Journal of Scientific Research 33, 3 (2009), 480--501. https://www.researchgate.net/publication/215677997_EMG_Signal_Classification_for_Human_Computer_Interaction_A_Review
[4]
Jennifer Allanson and Stephen H. Fairclough. 2004. A research agenda for physiological computing. Interacting with Computers 16, 5 (10 2004), 857--878. https://doi.org/10.1016/j.intcom.2004.08.001 arXiv:https://academic.oup.com/iwc/article-pdf/16/5/857/2268570/iwc16-0857.pdf
[5]
John Allen. 2007. Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement 28, 3 (March 2007), R1--R39. https://doi.org/10.1088/0967--3334/28/3/R01
[6]
Muhammad Zeeshan Baig and Manolya Kavakli. 2019. A Survey on Psycho-Physiological Analysis & Measurement Methods in Multimodal Systems. Multimodal Technologies and Interaction 3, 2 (May 2019), 37. https://doi.org/10.3390/mti3020037
[7]
Danny Plass-Oude Bos, Matthieu Duvinage, Oytun Oktay, Jaime Delgado Saa, Huseyin Guruler, Ayhan Istanbullu, Marijn van Vliet, Bram van de Laar, Mannes Poel, Linsey Roijendijk, Luca Tonin, Ali Bahramisharif, and Boris Reuderink. 2011. Looking around with your brain in a virtual world. IEEE, 1--8. https://doi.org/10.1109/CCMB.2011.5952110
[8]
Wolfram Boucsein. 2012. Electrodermal Activity. Springer US, Boston, MA. https://doi.org/10.1007/978--1--4614--1126-0
[9]
Wolfram Boucsein, Don C Fowles, Sverre Grimnes, Gershon Ben-Shakhar, Walton T roth, Michael E Dawson, Diane L Filion, and Society for Psychophysiological Research Ad Hoc Committee on Electrodermal Measures. 2012. Publication recommendations for electrodermal measurements. Psychophysiology 49, 8 (August 2012), 1017-1034. https://doi.org/10.1111/j.1469--8986.2012.01384.x
[10]
BIPM Bureau International des Poids et Mesures. 2019. The International System of Units (SI) (9 ed.). Pavillon de Breteuil. https://doi.org/10.1136/heartjnl-2017--312731
[11]
Luis A. Caro, Camilo Silva, Billy Peralta, Oriel A. Herrera, and Sergio Barrientos. 2015. Real-Time Recognition of Arm Motion Using Artificial Neural Network Multi-perceptron with Arduino One MicroController and EKG/EMG Shield Sensor. In Ambient Intelligence for Health, José Bravo, Ramón Hervás, and Vladimir Villarreal (Eds.). Vol. 9456. Springer International Publishing, Cham, 3--14. https://doi.org/10.1007/978--3--319--26508--7_1
[12]
Erik Champion and Andrew Dekker. 2011. Biofeedback and Virtual Environments. International Journal of Architectural Computing 9, 4 (Dec. 2011), 377--395. https://doi.org/10.1260/1478-0771.9.4.377
[13]
Rubana Chowdhury, Mamun Reaz, Mohd Ali, Ashrif Bakar, Kalaivani Chellappan, and Tae Chang. 2013. Surface Electromyography Signal Processing and Classification Techniques. Sensors 13, 9 (Sept. 2013), 12431--12466. https: //doi.org/10.3390/s130912431
[14]
Stuart Cunningham, John Henry, and JonathanWeinel. 2020. Augmenting Virtual Spaces: Affective Feedback in Computer Games. R. Earnshaw et al. (eds.), Technology, Design and the Arts-Opportunities and Challenges, Springer Series on Cultural Computing. https://doi.org/10.1007/978--3-030--42097-0_13
[15]
Andrew Duchowski. 2017. Eye tracking methodology. Springer Berlin Heidelberg, New York, NY.
[16]
Andrew T. Duchowski. 2020. Eye-based interaction in graphical systems: 20 years later gaze applications, analytics, & interaction. In ACM SIGGRAPH 2020 Courses. ACM, Virtual Event USA, 1--246. https://doi.org/10.1145/3388769.3407492
[17]
Stephen H. Fairclough. 2009. Fundamentals of physiological computing. Interacting with Computers 21, 1--2 (Jan. 2009), 133--145. https://doi.org/10.1016/j.intcom.2008.10.011
[18]
T.M. Fleming, L. Bavin, K. Stasiak, E. Hermansson-Webb, S.N. Merry, C. Cheek, M. Lucassen, H.M. Lau, B. Pollmuller, and S. Hetrick. 2017. Serious games and gamification for mental health: Current status and promising directions. Frontiers in Psychiatry 7, JAN (2017). https://doi.org/10.3389/fpsyt.2016.00215 cited By 173.
[19]
Raffaella Folgieri and Matteo Zichella. 2012. A BCI-based application in music: Conscious playing of single notes by brainwaves. Computers in Entertainment 10, 3 (Nov. 2012), 1--10. https://doi.org/10.1145/2381876.2381877
[20]
Alexandre Gomes, Iraquitan Filho, Fredson Santos, Wallace Lira, Bruno Gomes, and Schubert R. Carvalho. 2015. Anticipatory EEG Signals for Detecting and Classifying Game Interaction Onset. IEEE, 31--32. https://doi.org/10.1109/ SVR.2015.12
[21]
Zahid Halim, A. Rauf Baig, and Hasan Mujtaba. 2010. Measuring entertainment and automatic generation of entertaining games. International Journal of Information Technology, Communications and Convergence 1, 1 (2010), 92. https://doi.org/10.1504/IJITCC.2010.035229
[22]
Keita Higuchi, Michihiko Ueno, and Jun Rekimoto. 2014. Scarecrow: Avatar Representation Using Biological Information Feedback. In 2014 IEEE International Conference on Internet of Things(iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom). IEEE, Taipei, Taiwan, 352--359. https://doi.org/10.1109/iThings.2014.66
[23]
Olle Hilborn, Henrik Cederholm, Jeanette Eriksson, and Craig Lindley. 2013. A Biofeedback Game for Training Arousal Regulation during a Stressful Task: The Space Investor. In Human-Computer Interaction. Towards Intelligent and Implicit Interaction, David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, GerhardWeikum, and Masaaki Kurosu (Eds.). Vol. 8008. Springer Berlin Heidelberg, Berlin, Heidelberg, 403--410. https://doi.org/10.1007/978--3--642--39342--6_44
[24]
Samory Houzangbe, Olivier Christmann, Geoffrey Gorisse, and Simon Richir. 2020. Effects of voluntary heart rate control on user engagement and agency in a virtual reality game. Virtual Reality (March 2020). https://doi.org/10.1007/s10055- 020-00429--7
[25]
Janek Ilgner, Robin Kuhlmann, Helmut Eirund, and Martin Hering-Bertram. 2013. Interacting in 3D Virtual Worlds with Brain Computer Interfaces. In Proceedings of the 21st International Conference on Computer Graphics, Visualization and Computer Vision 2013. Vaclav Skala - Union Agency, Plzen, Czech Republic, 78--87.
[26]
Dhruv Jain, Misha Sra, Jingru Guo, Rodrigo Marques, RaymondWu, Justin Chiu, and Chris Schmandt. 2016. Immersive Terrestrial Scuba Diving Using Virtual Reality. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems - CHI EA '16. ACM Press, Santa Clara, California, USA, 1563--1569. https: //doi.org/10.1145/2851581.2892503
[27]
Jay Jantz, Adam Molnar, and Ramses Alcaide. 2017. A brain-computer interface for extended reality interfaces. ACM Press, 1--2. https://doi.org/10.1145/3089269.3089290
[28]
Petar Jercic and Veronica Sundstedt. 2019. Practicing emotion-regulation through biofeedback on the decision-making performance in the context of serious games: A systematic review. Entertainment Computing 29 (2019), 75--86. https://doi.org/10.1016/j.entcom.2019.01.001
[29]
Mehdi Karamnejad, Amber Choo, Diane Gromala, Chris Shaw, and Jeremy Mamisao. 2013. Immersive virtual reality and affective computing for gaming, fear and anxiety management. In ACM SIGGRAPH 2013 Posters on - SIGGRAPH'13. ACM Press, Anaheim, California, 1. https://doi.org/10.1145/2503385.2503466
[30]
Stevanus Kevin, Yun Suen Pai, and Kai Kunze. 2018. Virtual gaze: exploring use of gaze as rich interaction method with virtual agent in interactive virtual reality content. In Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology - VRST '18. ACM Press, Tokyo, Japan, 1--2. https://doi.org/10.1145/3281505.3281587
[31]
Mohamed Khamis, Carl Oechsner, Florian Alt, and Andreas Bulling. 2018. VRpursuits: interaction in virtual reality using smooth pursuit eye movements. In Proceedings of the 2018 International Conference on Advanced Visual Interfaces - AVI '18. ACM Press, Castiglione della Pescaia, Grosseto, Italy, 1--8. https://doi.org/10.1145/3206505.3206522
[32]
J. Matias Kivikangas, Guillaume Chanel, Ben Cowley, Inger Ekman, Mikko Salminen, Simo Järvelä, and Niklas Ravaja. 2011. A review of the use of psychophysiological methods in game research. Journal of Gaming & Virtual Worlds 3, 3 (Sept. 2011), 181--199. https://doi.org/10.1386/jgvw.3.3.181_1
[33]
Babis Koniaris, Ali Israr, Kenny Mitchell, Ivan Huerta, Maggie Kosek, Karen Darragh, Charles Malleson, Joanna Jamrozy, Nick Swafford, Jose Guitian, and Bochang Moon. 2016. IRIDiuM: immersive rendered interactive deep media. In ACM SIGGRAPH 2016 VR Village on - SIGGRAPH '16. ACM Press, Anaheim, California, 1--2. https://doi.org/10.1145/2929490.2929496
[34]
Tatyana Koutepova, Yantong Liu, Xiao Lan, and Jihyun Jeong. 2010. Enhancing video games in real time with biofeedback data. ACM Press, 1. https://doi.org/10.1145/1900354.1900417
[35]
Sylvia D. Kreibig. 2010. Autonomic nervous system activity in emotion: A review. Biological Psychology 84, 3 (July 2010), 394--421. https://doi.org/10.1016/j.biopsycho.2010.03.010
[36]
Kai Kuikkaniemi, Toni Laitinen, Marko Turpeinen, Timo Saari, Ilkka Kosunen, and Niklas Ravaja. 2010. The influence of implicit and explicit biofeedback in first-person shooter games. In Proceedings of the 28th international conference on Human factors in computing systems - CHI '10. ACM Press, Atlanta, Georgia, USA, 859. https://doi.org/10.1145/ 1753326.1753453
[37]
E. C. Lalor, S. P. Kelly, C. Finucane, R. Burke, R. Smith, R. B. Reilly, and G. McDarby. 2005. Steady-State VEP-Based Brain-Computer Interface Control in an Immersive 3D Gaming Environment. EURASIP Journal on Advances in Signal Processing 2005, 19 (Nov. 2005), 706906. https://doi.org/10.1155/ASP.2005.3156
[38]
Michael Lankes and Barbara Stiglbauer. 2016. GazeAR: Mobile Gaze-Based Interaction in the Context of Augmented Reality Games. In Augmented Reality, Virtual Reality, and Computer Graphics, Lucio Tommaso De Paolis and Antonio Mongelli (Eds.). Vol. 9768. Springer International Publishing, Cham, 397--406. https://doi.org/10.1007/978--3--319--40621--3_28
[39]
A. Lecuyer, F. Lotte, R.B. Reilly, R. Leeb, M. Hirose, and M. Slater. 2008. Brain-Computer Interfaces, Virtual Reality, and Videogames. Computer 41, 10 (Oct. 2008), 66--72. https://doi.org/10.1109/MC.2008.410
[40]
Johnny Chung Lee. 2008. Hacking the Nintendo Wii Remote. IEEE Pervasive Computing 7, 3 (July 2008), 39--45. https://doi.org/10.1109/MPRV.2008.53
[41]
Fotis Liarokapis, Kurt Debattista, Athanasios Vourvopoulos, Panagiotis Petridis, and Alina Ene. 2014. Comparing interaction techniques for serious games through brain--computer interfaces: A user perception evaluation study. Entertainment Computing 5, 4 (Dec. 2014), 391--399. https://doi.org/10.1016/j.entcom.2014.10.004
[42]
Adam Lobel, Marientina Gotsis, Erin Reynolds, Michael Annetta, Rutger C.M.E. Engels, and Isabela Granic. 2016. Designing and Utilizing Biofeedback Games for Emotion Regulation: The Case of Nevermind. ACM Press, 1945--1951. https://doi.org/10.1145/2851581.2892521
[43]
Eneko Lopetegui, Begona Garcia Zapirain, and Amaia Mendez. 2011. Tennis computer game with brain control using EEG signals. IEEE, 228--234. https://doi.org/10.1109/CGAMES.2011.6000344
[44]
Fabien Lotte. 2011. Brain-computer interfaces for 3D games: hype or hope? ACM Press, 325--327. https://doi.org/10. 1145/2159365.2159427
[45]
Fabien Lotte, Yann Renard, and Anatole Lécuyer. 2008. Self-Paced Brain-Computer Interaction with Virtual Worlds: A Quantitative and Qualitative Study "Out of the Lab". In 4th international Brain Computer Interface Workshop and Training Course. Graz University of Technology, Graz, Austria. https://hal.inria.fr/inria-00304340
[46]
Muhtar Çakan Ludali and Cengiz Acartürk. 2018. User interaction in hands-free gaming: a comparative study of gaze-voice and touchscreen interface control. TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES 26, 4 (July 2018), 1967--1976. https://doi.org/10.3906/elk-1710--128
[47]
A. MacIntosh, N. Vignais, V. Vigneron, L. Fay, A Musielak, E. Desailly, and E. Biddiss. 2020. The design and evaluation of electromyography and inertial biofeedback in hand motor therapy gaming. Assistive Technology (April 2020), 1--9. https://doi.org/10.1080/10400435.2020.1744770
[48]
Regan L. Mandryk and Lennart E. Nacke. 2016. Chapter 6 Biometrics in Gaming and Entertainment Technologies. In Biometrics in a Data Driven World, Sinjini Mitra and Mikhail Gofman (Eds.). CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487--2742, 191--224. https://doi.org/10.1201/9781315317083--7
[49]
Edward F. Melcer, Michael T. Astolfi, Mason Remaley, Adam Berenzweig, and Tudor Giurgica-Tiron. 2018. CTRLLabs: Hand Activity Estimation and Real-time Control from Neuromuscular Signals. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems - CHI '18. ACM Press, Montreal QC, Canada, 1--4. https://doi.org/10.1145/3170427.3186520
[50]
Alena Mesarosova and Manuel Ferrer Hernandez. 2015. Art Behind the Mind: Exploring New Art Forms by Implementation of the Electroencephalography. In 2015 International Conference on Cyberworlds (CW). IEEE, Visby, Sweden, 259--266. https://doi.org/10.1109/CW.2015.24
[51]
David Moher, Alessandro Liberati, Jennifer Tetzlaff, and Douglas G. Altman. 2010. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. International Journal of Surgery 8, 5 (2010), 336--341. https://doi.org/10.1016/j.ijsu.2010.02.007
[52]
Christian Mühl, Hayrettin Gürkök, Danny Plass-Oude Bos, Marieke E. Thurlings, Lasse Scherffig, Matthieu Duvinage, Alexandra A. Elbakyan, SungWook Kang, Mannes Poel, and Dirk Heylen. 2010. Bacteria Hunt: Evaluating multiparadigm BCI interaction. Journal on Multimodal User Interfaces 4, 1 (March 2010), 11--25. https://doi.org/10.1007/ s12193-010-0046-0
[53]
L.E. Nacke. 2018. Introduction to biometric measures for Games User Research. 281--299. https://doi.org/10.1093/oso/ 9780198794844.003.0016
[54]
Lennart E. Nacke. 2013. An Introduction to Physiological Player Metrics for Evaluating Games. Springer London, London, 585--619. https://doi.org/10.1007/978--1--4471--4769--5_26
[55]
Lennart E. Nacke. 2015. Games User Research and Physiological Game Evaluation. Springer International Publishing, Cham, 63--86. https://doi.org/10.1007/978--3--319--15985-0_4
[56]
Lennart Erik Nacke, Michael Kalyn, Calvin Lough, and Regan Lee Mandryk. 2011. Biofeedback game design: using direct and indirect physiological control to enhance game interaction. ACM Press, 103. https://doi.org/10.1145/1978942. 1978958
[57]
David Nanchen. 2018. Resting heart rate: what is normal? Heart 104, 13 (2018), 1048--1049. https://doi.org/10.1136/ heartjnl-2017--312731 arXiv:https://heart.bmj.com/content/104/13/1048.full.pdf
[58]
Diego Navarro and Veronica Sundstedt. 2017. Simplifying game mechanics: gaze as an implicit interaction method. In SA '17 SIGGRAPH Asia 2017 Technical Briefs. ACM Press, Bangkok, Thailand, 1--4. https://doi.org/10.1145/3145749.3149446
[59]
Pedro A. Nogueira, Rui Rodrigues, and Eugénio Oliveira. 2013. Real-Time Psychophysiological Emotional State Estimation in Digital Gameplay Scenarios. In Engineering Applications of Neural Networks, Lazaros Iliadis, Harris Papadopoulos, and Chrisina Jayne (Eds.). Vol. 383. Springer Berlin Heidelberg, Berlin, Heidelberg, 243--252. http: //link.springer.com/10.1007/978--3--642--41013-0_25
[60]
Pedro A. Nogueira, Vasco Torres, Rui Rodrigues, Eugénio Oliveira, and Lennart E. Nacke. 2016. Vanishing scares: biofeedback modulation of affective player experiences in a procedural horror game. Journal on Multimodal User Interfaces 10, 1 (March 2016), 31--62. https://doi.org/10.1007/s12193-015-0208--1
[61]
Yuri O. Nuzhdin, Sergei L. Shishkin, Anastasia A. Fedorova, Alexander G. Trofimov, Evgeny P. Svirin, Bogdan L. Kozyrskiy, Alexei A. Medyntsev, Ignat A. Dubynin, and Boris M. Velichkovsky. 2017. The Expectation Based Eye-Brain- Computer Interface: An Attempt of Online Test. In Proceedings of the 2017 ACM Workshop on An Application-oriented Approach to BCI out of the laboratory - BCIforReal '17. ACM Press, Limassol, Cyprus, 39--42. https://doi.org/10.1145/ 3038439.3038446
[62]
Yun Suen Pai, Tilman Dingler, and Kai Kunze. 2018. Assessing hands-free interactions for VR using eye gaze and electromyography. Virtual Reality (Nov. 2018). https://doi.org/10.1007/s10055-018-0371--2
[63]
Yun Suen Pai, Benjamin Outram, Noriyasu Vontin, and Kai Kunze. 2016. Transparent Reality: Using Eye Gaze Focus Depth as Interaction Modality. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology - UIST '16 Adjunct. ACM Press, Tokyo, Japan, 171--172. https://doi.org/10.1145/2984751.2984754
[64]
Avinash Parnandi and Ricardo Gutierrez-Osuna. 2015. A comparative study of game mechanics and control laws for an adaptive physiological game. Journal on Multimodal User Interfaces 9, 1 (March 2015), 31--42. https://doi.org/10. 1007/s12193-014-0159-y
[65]
Patryk Piotrowski and Adam Nowosielski. 2020. Gaze-Based Interaction for VR Environments. In Image Processing and Communications, Micha? Chora? and Ryszard S. Chora? (Eds.). Vol. 1062. Springer International Publishing, Cham, 41--48. https://doi.org/10.1007/978--3-030--31254--1_6 Series Title: Advances in Intelligent Systems and Computing.
[66]
Alan T Pope, Edward H Bogart, and Debbie S Bartolome. 1995. Biocybernetic system evaluates indices of operator engagement in automated task. Biological Psychology 40, 1--2 (May 1995), 187--195. https://doi.org/10.1016/0301- 0511(95)05116--3
[67]
David C. Preston and Barbara E. Shapiro. 2013. Basic Overview of Electromyography. In Electromyography and Neuromuscular Disorders. Elsevier, 125--128. https://doi.org/10.1016/B978--1--4557--2672--1.00012-X
[68]
Enzio Probst, Vincent Suttner, Monja Dietrich, and Theres Buehler. 2018. Rapture of the deep. In SIGGRAPH Asia 2018 Virtual & Augmented Reality on - SA '18. ACM Press, Tokyo, Japan, 1--2. https://doi.org/10.1145/3275495.3275499
[69]
Argenis Ramirez Gomez and Hans Gellersen. 2020. KryptonEyed: Playing with Gaze Without Looking. In International Conference on the Foundations of Digital Games. ACM, Bugibba Malta, 1--4. https://doi.org/10.1145/3402942.3403017
[70]
Mamunur Rashid, Norizam Sulaiman, Anwar P. P. Abdul Majeed, Rabiu Muazu Musa, Ahmad Fakhri Ab. Nasir, Bifta Sama Bari, and Sabira Khatun. 2020. Current Status, Challenges, and Possible Solutions of EEG-Based Brain- Computer Interface: A Comprehensive Review. Frontiers in Neurorobotics 14 (June 2020). https://doi.org/10.3389/ fnbot.2020.00025
[71]
Seema Rawat, Somya Vats, and Praveen Kumar. 2016. Evaluating and exploring the MYO ARMBAND. In 2016 International Conference System Modeling & Advancement in Research Trends (SMART). IEEE, Moradabad, India, 115-- 120. https://doi.org/10.1109/SYSMART.2016.7894501
[72]
M. B. I. Reaz, M. S. Hussain, and F. Mohd-Yasin. 2006. Techniques of EMG signal analysis: detection, processing, classification and applications. Biological Procedures Online 8, 1 (Dec. 2006), 11--35. https://doi.org/10.1251/bpo115
[73]
Katharina Reitz, Claudia Stockhausen, and Detlef Krömker. 2012. Zone of impulse: physiological data enhanced gaming. ACM Press, 221. https://doi.org/10.1145/2371664.2371718
[74]
Boris Reuderink, Anton Nijholt, and Mannes Poel. 2009. Affective Pacman: A Frustrating Game for Brain-Computer Interface Experiments. In Intelligent Technologies for Interactive Entertainment, Anton Nijholt, Dennis Reidsma, and Hendri Hondorp (Eds.). Vol. 9. Springer Berlin Heidelberg, Berlin, Heidelberg, 221--227. https://doi.org/10.1007/978--3--642-02315--6_23
[75]
Raquel Robinson, Katelyn Wiley, Amir Rezaeivahdati, Madison Klarkowski, and Regan L. Mandryk. 2020. "Let's Get Physiological, Physiological!": A Systematic Review of Affective Gaming. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play (Virtual Event, Canada) (CHI PLAY '20). Association for Computing Machinery, New York, NY, USA, 132--147. https://doi.org/10.1145/3410404.3414227
[76]
Reinhold Scherer, Josef Faller, David Balderas, Elisabeth V. C. Friedrich, Markus Pröll, Brendan Allison, and Gernot Müller-Putz. 2013. Brain--computer interfacing: more than the sum of its parts. Soft Computing 17, 2 (Feb. 2013), 317--331. https://doi.org/10.1007/s00500-012-0895--4
[77]
R. Scherer, F. Lee, A. Schlogl, R. Leeb, H. Bischof, and G. Pfurtscheller. 2008. Toward Self-Paced Brain--Computer Communication: Navigation Through Virtual Worlds. IEEE Transactions on Biomedical Engineering 55, 2 (Feb. 2008), 675--682. https://doi.org/10.1109/TBME.2007.903709
[78]
Mina Shojaeizadeh, Siavash Mortazavi, and Soussan Djamasbi. 2015. Gaze Interaction and Gameplay for Generation Y and Baby Boomer Users. In Universal Access in Human-Computer Interaction. Access to Learning, Health and Well-Being, Margherita Antona and Constantine Stephanidis (Eds.). Vol. 9177. Springer International Publishing, Cham, 555--564. https://doi.org/10.1007/978--3--319--20684--4_54
[79]
R. T. Soares, E. S. Siqueira, M. A. Miura, P. B. Tiago e Silva, and C. D. Castanho. 2016. Biofeedback Sensors in Game Telemetry Research. In SBC -- Proceedings of SBGames. 81--89.
[80]
Misha Sra, Xuhai Xu, and Pattie Maes. 2018. BreathVR: Leveraging Breathing as a Directly Controlled Interface for Virtual Reality Games. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems - CHI '18. ACM Press, Montreal QC, Canada, 1--12. https://doi.org/10.1145/3173574.3173914
[81]
Veronica Sundstedt. 2012. Gazing at Games: An Introduction to Eye Tracking Control. Synthesis Lectures on Computer Graphics and Animation 5, 1 (March 2012), 1--113. https://doi.org/10.2200/S00395ED1V01Y201111CGR014
[82]
Veronica Sundstedt, Diego Navarro, and Julian Mautner. 2016. Possibilities and challenges with eye tracking in video games and virtual reality applications. ACM Press, 1--150. https://doi.org/10.1145/2988458.2988466
[83]
Tarja Susi, Mikael Johannesson, and Per Backlund. 2015. Serious Games - An Overview. Technical Report. University of Skövde, Sweden.
[84]
Paul Tennent, Duncan Rowland, Joe Marshall, Stefan Rennick Egglestone, Alexander Harrison, Zachary Jaime, Brendan Walker, and Steve Benford. 2011. Breathalising games: understanding the potential of breath control in game interfaces. In Proceedings of the 8th International Conference on Advances in Computer Entertainment Technology - ACE '11. ACM Press, Lisbon, Portugal, 1. https://doi.org/10.1145/2071423.2071496
[85]
Gabriel Alves Mendes Vasiljevic and Leonardo Cunha de Miranda. 2020. Brain-Computer Interface Games Based on Consumer-Grade EEG Devices:ASystematic Literature Review. International Journal of HumanâComputer Interaction 36, 2 (2020), 105--142. https://doi.org/10.1080/10447318.2019.1612213 arXiv:https://doi.org/10.1080/10447318.2019.1612213
[86]
Eduardo Velloso and Marcus Carter. 2016. The Emergence of EyePlay: A Survey of Eye Interaction in Games. In Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play - CHI PLAY '16. ACM Press, Austin, Texas, USA, 171--185. https://doi.org/10.1145/2967934.2968084
[87]
Eduardo Velloso, Carl Oechsner, Katharina Sachmann, Markus Wirth, and Hans Gellersen. 2015. Arcade+: A Platform for Public Deployment and Evaluation of Multi-Modal Games. In Proceedings of the 2015 Annual Symposium on Computer-Human Interaction in Play - CHI PLAY '15. ACM Press, London, United Kingdom, 271--275. https://doi.org/ 10.1145/2793107.2793145
[88]
Stephen Vickers, Howell Istance, and Aulikki Hyrskykari. 2013. Performing Locomotion Tasks in Immersive Computer Games with an Adapted Eye-Tracking Interface. ACM Transactions on Accessible Computing 5, 1 (Sept. 2013), 1--33. https://doi.org/10.1145/2514856
[89]
Stephen Vickers, Howell Istance, and Matthew Smalley. 2010. EyeGuitar: making rhythm based music video games accessible using only eye movements. In Proceedings of the 7th International Conference on Advances in Computer Entertainment Technology - ACE '10. ACM Press, Taipei, Taiwan, 36. https://doi.org/10.1145/1971630.1971641
[90]
Melodie Vidal, Remi Bismuth, Andreas Bulling, and Hans Gellersen. 2015. The Royal Corgi: Exploring Social Gaze Interaction for Immersive Gameplay. ACM Press, 115--124. https://doi.org/10.1145/2702123.2702163
[91]
Lyn Weiss, Jay Weiss, Walter Gaudino, Victor Isaac, and Kristin Gustafson. 2004. Electromyography. In Easy EMG. Elsevier, 41--80. https://doi.org/10.1016/B978-0--7506--7431--7.50010--5
[92]
Huaiwei Wu, Chenguang Yang, Ruowei Wang, and Chun-Yi Su. 2016. Development of a biofeedback enhanced multimedia game. IEEE, 4987--4992. https://doi.org/10.1109/CCDC.2016.7531886
[93]
Xu Zhang, Xiang Chen, Yun Li, V. Lantz, Kongqiao Wang, and Jihai Yang. 2011. A Framework for Hand Gesture Recognition Based on Accelerometer and EMG Sensors. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 41, 6 (Nov. 2011), 1064--1076. https://doi.org/10.1109/TSMCA.2011.2116004
[94]
Georgios N. Yannakakis, Héctor P. Martínez, and Arnav Jhala. 2010. Towards affective camera control in games. User Modeling and User-Adapted Interaction 20, 4 (Oct. 2010), 313--340. https://doi.org/10.1007/s11257-010--9078-0
[95]
M. Abdullah Zafar, Beena Ahmed, Rami Al Rihawi, and Ricardo Gutierrez-Osuna. 2020. Gaming Away Stress: Using Biofeedback Games to Learn Paced Breathing. IEEE Transactions on Affective Computing 11, 3 (July 2020), 519--531. https://doi.org/10.1109/TAFFC.2018.2816945
[96]
Nurul Hidayah Binti Mat Zain and Azizah Jaafar. 2011. Integrating digital games based learning environments with eye gaze-based interaction. In 2011 International Conference on Pattern Analysis and Intelligence Robotics. IEEE, Kuala Lumpur, Malaysia, 222--227. https://doi.org/10.1109/ICPAIR.2011.5976930
[97]
Xu Zhang, Xiang Chen, Wen-hui Wang, Ji-hai Yang, Vuokko Lantz, and Kong-qiao Wang. 2008. Hand gesture recognition and virtual game control based on 3D accelerometer and EMG sensors. In Proceedingsc of the 13th international conference on Intelligent user interfaces - IUI '09. ACM Press, Sanibel Island, Florida, USA, 401. https://doi.org/10.1145/1502650.1502708
[98]
QiBin Zhao, LiQing Zhang, and Andrzej Cichocki. 2009. EEG-based asynchronous BCI control of a car in 3D virtual reality environments. Chinese Science Bulletin 54, 1 (Jan. 2009), 78--87. https://doi.org/10.1007/s11434-008-0547--3

Cited By

View all
  • (2024)Flow Optimizer: A Dynamic Difficulty Adjustment Framework for Serious Games in Neurorehabilitation2024 IEEE 12th International Conference on Serious Games and Applications for Health (SeGAH)10.1109/SeGAH61285.2024.10639576(1-8)Online publication date: 7-Aug-2024
  • (2024)Design and Development of an Interactive Proportional Myoelectric-Controlled Biofeedback Video Game for Knee Osteoarthritis Rehabilitation2024 16th Biomedical Engineering International Conference (BMEiCON)10.1109/BMEiCON64021.2024.10896364(1-5)Online publication date: 21-Nov-2024
  • (2024)Video game play impacts on biological regulationDiscover Psychology10.1007/s44202-024-00284-64:1Online publication date: 26-Oct-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Proceedings of the ACM on Human-Computer Interaction
Proceedings of the ACM on Human-Computer Interaction  Volume 5, Issue CHI PLAY
CHI PLAY
September 2021
1535 pages
EISSN:2573-0142
DOI:10.1145/3490463
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 October 2021
Published in PACMHCI Volume 5, Issue CHI PLAY

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. biofeedback
  2. entertainment
  3. interaction techniques
  4. physiological
  5. systematic literature review
  6. video games
  7. virtual reality

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)306
  • Downloads (Last 6 weeks)48
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Flow Optimizer: A Dynamic Difficulty Adjustment Framework for Serious Games in Neurorehabilitation2024 IEEE 12th International Conference on Serious Games and Applications for Health (SeGAH)10.1109/SeGAH61285.2024.10639576(1-8)Online publication date: 7-Aug-2024
  • (2024)Design and Development of an Interactive Proportional Myoelectric-Controlled Biofeedback Video Game for Knee Osteoarthritis Rehabilitation2024 16th Biomedical Engineering International Conference (BMEiCON)10.1109/BMEiCON64021.2024.10896364(1-5)Online publication date: 21-Nov-2024
  • (2024)Video game play impacts on biological regulationDiscover Psychology10.1007/s44202-024-00284-64:1Online publication date: 26-Oct-2024
  • (2024)A systematic review of wearable biosensor usage in immersive virtual reality experiencesVirtual Reality10.1007/s10055-024-00970-928:2Online publication date: 8-Mar-2024
  • (2023)Biofeedback-Driven Multiplayer Games: Leveraging Social Awareness and Physiological Signals for PlayCompanion Proceedings of the Annual Symposium on Computer-Human Interaction in Play10.1145/3573382.3616044(212-215)Online publication date: 6-Oct-2023
  • (2023)“Hey, can we talk?”: Exploring How Revealing Implicit Emotional Responses Tangibly Could Foster Empathy During Mobile TextingProceedings of the Seventeenth International Conference on Tangible, Embedded, and Embodied Interaction10.1145/3569009.3573124(1-7)Online publication date: 26-Feb-2023
  • (2023)Buffer Resets: A Packet-Discarding Policy for Timely Physiological Data Collection in Virtual Reality Gaming SystemsIEEE Sensors Letters10.1109/LSENS.2023.33341527:12(1-4)Online publication date: Dec-2023
  • (2023)Affective Game Computing: A SurveyProceedings of the IEEE10.1109/JPROC.2023.3315689111:10(1423-1444)Online publication date: Oct-2023
  • (2023)Biofeedback in Rehabilitation (Modern Review)2023 IEEE XVI International Scientific and Technical Conference Actual Problems of Electronic Instrument Engineering (APEIE)10.1109/APEIE59731.2023.10347606(240-245)Online publication date: 10-Nov-2023
  • (2023)Presenting a New Muscle Synergy Analysis Based Mechanism to Design a Trackable Visual Biofeedback Signal: Applicable to Arm Movement Recovery After Ischemic StrokeIEEE Access10.1109/ACCESS.2023.328740811(70190-70202)Online publication date: 2023
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media