skip to main content
10.1145/3475720.3484442acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
research-article

Software and Content Design of a Browser-based Mobile 4D VR Application to Explore Historical City Architecture

Published:20 October 2021Publication History

ABSTRACT

The Kulturerbe4D project aims at making the diversity and change processes of architectural monuments in the urban context virtually visible and experienceable, especially for children and young people, but also for residents and tourists. A virtual city tour providing cultural and historical information is to be combined with the transfer of knowledge about monuments, anthropogenic factors of influence, and protective measures. This article focusses on three main challenges in producing city-scale mobile 4D applications: (a) 4D content creation specifically for historical purposes is highly labour intensive, (b) web applications are better accepted by users but require more adoption to cope with technical limitations, (c) historically accurate 4D content is of disperse visual quality and visualization strategies are rarely empirically proven. Within this article we present our research and development work to overcome those issues.

References

  1. Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M. Seitz, and Richard Szeliski. 2011. Building Rome in a Day. Commun. ACM , Vol. 54, 10 (2011), 105--112. https://doi.org/10.1145/2001269.2001293 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Anastassia Angelopoulou, Daphne Economou, Vassiliki Bouki, Alexandra Psarrou, Li Jin, Chris Pritchard, and Frantzeska Kolyda. 2012. Mobile Augmented Reality for Cultural Heritage. In Mobile Wireless Middleware, Operating Systems, and Applications, Nalini Venkatasubramanian, Vladimir Getov, and Stephan Steglich (Eds.). Springer, Berlin, Heidelberg, 15--22. https://doi.org/10.1007/978--3--642--30607--5_2Google ScholarGoogle Scholar
  3. Fabrizio I. Apollonio. 2016. Classification Schemes for Visualization of Uncertainty in Digital Hypothetical Reconstruction. In 3D Research Challenges in Cultural Heritage II: How to Manage Data and Knowledge Related to Interpretative Digital 3D Reconstructions of Cultural Heritage , , Sander Münster, Mieke Pfarr-Harfst, Piotr Kuroczy'ski, and Marinos Ioannides (Eds.). Springer International Publishing, Cham, 173--197. https://doi.org/10.1007/978--3--319--47647--6_9Google ScholarGoogle Scholar
  4. Rudolf Arnheim. 1969. Visual Thinking .Rütten & Loening, München.Google ScholarGoogle Scholar
  5. Maria D. Avgerinou. 2001. Towards a Visual Literacy Index. In Exploring the Visual Future: Art Design, Science & Technology, Robert E. Griffin, Vicki S. Williams, and Jung Lee (Eds.). International Visual Literacy Association, Loretto, PA, 17--26.Google ScholarGoogle Scholar
  6. Mafkereseb Kassahun Bekele, Roberto Pierdicca, Emanuele Frontoni, Eva Savina Malinverni, and James Gain. 2018. A Survey of Augmented, Virtual, and Mixed Reality for Cultural Heritage. Journal on Computing and Cultural Heritage , Vol. 11, 2 (2018), Article 7. https://doi.org/10.1145/3145534 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Benedict Bender. 2020. The Impact of Integration on Application Success and Customer Satisfaction in Mobile Device Platforms. Business & Information Systems Engineering , Vol. 62, 6 (2020), 515--533. https://doi.org/10.1007/s12599-020-00629-0Google ScholarGoogle ScholarCross RefCross Ref
  8. Wesley Bernardini and Matthew A. Peeples. 2015. Sight Communities: The Social Significance of Shared Visual Landmarks. American Antiquity , Vol. 80, 2 (2015), 215--235. https://doi.org/10.7183/0002--7316.80.2.215Google ScholarGoogle ScholarCross RefCross Ref
  9. Marco G. Bevilacqua, Gabriella Caroti, Andrea Piemonte, and Denise Ulivieri. 2019. Reconstruction of lost Architectural Volumes by Integration of Photogrammetry from Archive Imagery with 3-D Models of the Status Quo. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences , Vol. XLII-2/W9 (2019), 119--125. https://doi.org/10.5194/isprs-archives-XLII-2-W9--119--2019Google ScholarGoogle Scholar
  10. Gabriele Bitelli, Valentina A. Girelli, Michele Marziali, and Antonio Zanutta. 2007. Use of historical images for the documentation and the metrical study of cultural heritage by means of digital photogrammetric techniques. In AntiCIPAting the Future of the Cultural Past, Proceedings of the XXI International CIPA Symposium .Google ScholarGoogle Scholar
  11. Jamieson Brettle and Frank Galligan. 2017. Introducing Draco: compression for 3D graphics. https://opensource.googleblog.com/2017/01/introducing-draco-compression-for-3d.html Retrieved July 19, 2021 fromGoogle ScholarGoogle Scholar
  12. Jennifer M. Brill and Robert Maribe Branch. 2007. Visual Literacy Defined -- The Results of a Delphi Study: Can IVLA (Operationally) Define Visual Literacy? Journal of Visual Literacy , Vol. 27, 1 (2007), 47--60. https://doi.org/10.1080/23796529.2007.11674645Google ScholarGoogle ScholarCross RefCross Ref
  13. Erik Champion and Hafizur Rahaman. 2020. Survey of 3D digital heritage repositories and platforms. Virtual Archaeology Review , Vol. 11, 23 (2020), 1--15. https://doi.org/10.4995/var.2020.13226Google ScholarGoogle ScholarCross RefCross Ref
  14. Yu-Lien Chang, Huei-Tse Hou, Chao-Yang Pan, Yao-Ting Sung, and Kuo-En Chang. 2015. Apply an Augmented Reality in a Mobile Guidance to Increase Sense of Place for Heritage Places. Journal of Educational Technology & Society , Vol. 18, 2 (2015), 166--178.Google ScholarGoogle Scholar
  15. Thomas Chatzidimitris, Evangelia Kavakli, Maria Economou, and Damianos Gavalas. 2013. Mobile Augmented Reality edutainment applications for cultural institutions. In Proceedings of the 4th International Conference on Information, Intelligence, Systems and Applications (IISA) . https://doi.org/10.1109/IISA.2013.6623726Google ScholarGoogle ScholarCross RefCross Ref
  16. Joseph Chazalon, Edwin Carlinet, Yizi Chen, Julien Perret, Bertrand Duménieu, Clément Mallet, Thierry Géraud, Vincent Nguyen, Nam Nguyen, Josef Baloun, Ladislav Lenc, and Pavel Král. 2021. ICDAR 2021 Competition on Historical Map Segmentation. In Proceedings of the 16th International Conference on Document Analysis and Recognition (ICDAR'21) . Lausanne, Switzerland.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ond?ej Chum, Andrej Mikulík, Michal Perdoch, and Ji?í Matas. 2011. Total recall II: Query expansion revisited. In Proceedings of the Conference on Computer Vision and Pattern Recognition. IEEE, 889--896. https://doi.org/10.1109/CVPR.2011.5995601 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Roberto Cipolla, Tom Drummond, and Duncan P.. Robertson. 1999. Camera Calibration from Vanishing Points in Image of Architectural Scenes. In Procedings of the British Machine Vision Conference. British Machine Vision Association, 382--391.Google ScholarGoogle Scholar
  19. Mariella De Fino, Claudia Ceppi, and Fabio Fatiguso. 2020. Virtual Tours and Informational Models for Improving Territorial Attractiveness and the Smart Management of Architectural Heritage: The 3D-IMP-ACT Project. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences , Vol. XLIV-M-1--2020 (2020), 473--480. https://doi.org/10.5194/isprs-archives-XLIV-M-1--2020--473--2020Google ScholarGoogle Scholar
  20. Dianne Dredge, Giang Phi, Renuka Mahadevan, Eóin Meehan, and Elena Silvia Popescu. 2019. Digitalisation in Tourism. In-depth analysis of challenges and opportunities .Executive Agency for Small and Medium-sized Enterprises (EASME), European Commission, Aalbourg.Google ScholarGoogle Scholar
  21. Iwona Dudek, Jean-Yves Blaise, Livio De Luca, Laurent Bergerot, and Noémie Renaudin. 2015. How was this done? An attempt at formalising and memorising a digital asset's making-of. In Digital Heritage, Vol. 2. IEEE, 343--346. https://doi.org/10.1109/DigitalHeritage.2015.7419519Google ScholarGoogle Scholar
  22. Hongchao Fan, Alexander Zipf, Qing Fu, and Pascal Neis. 2014. Quality assessment for building footprints data on OpenStreetMap. International Journal of Geographical Information Science , Vol. 28, 4 (2014), 700--719. https://doi.org/10.1080/13658816.2013.867495 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Elisa Farella, Emre Özdemir, and Fabio Remondino. 2021. 4D Building Reconstruction with Machine Learning and Historical Maps. Applied Sciences , Vol. 11 (2021), 1445. https://doi.org/10.3390/app11041445Google ScholarGoogle ScholarCross RefCross Ref
  24. Marcus Geelnard. 2010. OpenCTM. http://openctm.sourceforge.net/ Retrieved July 19, 2021 fromGoogle ScholarGoogle Scholar
  25. James J. Gibson. 1950. The perception of the visual world .Houghton Mifflin, Oxford, England.Google ScholarGoogle Scholar
  26. Manuela Glaser, Dominik Lengyel, Catherine Toulouse, and Stephan Schwan. 2017. Designing computer-based learning contents: influence of digital zoom on attention. Educational Technology Research and Development , Vol. 65, 5 (2017), 1135--1151. https://doi.org/10.1007/s11423-016--9495--9Google ScholarGoogle ScholarCross RefCross Ref
  27. Manuela Glaser and Stephan Schwan. 2015. Explaining pictures: How verbal cues influence processing of pictorial learning material. Journal of Educational Psychology , Vol. 107, 4 (2015), 1006--1018. https://doi.org/10.1037/edu0000044Google ScholarGoogle ScholarCross RefCross Ref
  28. Manuela Glaser and Stephan Schwan. 2019. Processing textual and visual certainty information about digital architectural models. Computers in Human Behavior , Vol. 96 (2019), 141--148. https://doi.org/10.1016/j.chb.2019.02.023Google ScholarGoogle ScholarCross RefCross Ref
  29. Hubertus Günther. 1988. Das Studium der antiken Architektur in den Zeichnungen der Hochrenaissance .Veröffentlichungen der Bibliotheca Hertziana, Max-Planck-Institut in Rom, Tübingen.Google ScholarGoogle Scholar
  30. E. Bruce Goldstein. 2005. Blackwell Handbook of Sensation and Perception .Blackwell Publishing, Malden, MA.Google ScholarGoogle Scholar
  31. Charles Goodwin. 1994. Professional Vision. American Anthropologist , Vol. 96, 3 (1994), 606--633.Google ScholarGoogle ScholarCross RefCross Ref
  32. Oliver Grau. 1999. Die Sehnsucht, im Bild zu sein. Zur Kunstgeschichte der virtuellen Realität . Dissertation. Humboldt-Universität zu Berlin, Berlin.Google ScholarGoogle Scholar
  33. Linda N. Groat and Carole Després. 1991. The Significance of Architectural Theory for Environmental Design Research. In Advances in Environment, Behavior, and Design , , Ervin H. Zube and Gary T. Moore (Eds.). Springer US, Boston, MA, 3--52. https://doi.org/10.1007/978--1--4684--5814--5_1Google ScholarGoogle Scholar
  34. Seokho Han, Ji-Hwan Yoon, and Jookyung Kwon. 2021. Impact of Experiential Value of Augmented Reality: The Context of Heritage Tourism. Sustainability , Vol. 13, 8 (2021), 4147. https://doi.org/10.3390/su13084147Google ScholarGoogle Scholar
  35. Sven Havemann, Volker Settgast, Marcel Lancelle, and Dieter W. Fellner. 2007. 3D-Powerpoint -- Towards a Design Tool for Digital Exhibitions of Cultural Artifacts. In VAST: International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage , , David Arnold, Franco Niccolucci, and Alan Chalmers (Eds.). The Eurographics Association. https://doi.org/10.2312/VAST/VAST07/039-046 Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Niklaus Heeb and Jonas Christen. 2019. Strategien zur Vermittlung von Fakt, Hypothese und Fiktion in der digitalen Architektur-Rekonstruktion. In Der Modelle Tugend 2.0: Digitale 3D-Rekonstruktion als virtueller Raum der architekturhistorischen Forschung (Computing in Art and Architecture), , Piotr Kuroczy'ski, Mieke Pfarr-Harfst, and Sander Münster (Eds.). arthistoricum.net, Heidelberg, 226--254. https://doi.org/10.11588/arthistoricum.515.c7570Google ScholarGoogle Scholar
  37. Stephan Hoppe. 2019. Digitale Technik und visuelle Imagination: Das ungleiche Elternpaar der virtuellen Rekonstruktion historischer Architektur. In Der Modelle Tugend 2.0: Digitale 3D-Rekonstruktion als virtueller Raum der architekturhistorischen Forschung (Computing in Art and Architecture), , Piotr Kuroczy'ski, Mieke Pfarr-Harfst, and Sander Münster (Eds.). arthistoricum.net, Heidelberg, 31--36. https://doi.org/10.11588/arthistoricum.515.c7443Google ScholarGoogle Scholar
  38. Markus Huff and Sephan Schwan. 2008. Verbalizing events: Overshadowing or facilitation? Memory & Cognition , Vol. 36, 2 (2008), 392--402. https://doi.org/10.3758/MC.36.2.392Google ScholarGoogle ScholarCross RefCross Ref
  39. Markus Huff and Stephan Schwan. 2012. The verbal facilitation effect in learning to tie nautical knots. Learning and Instruction , Vol. 22, 5 (2012), 376--385. https://doi.org/10.1016/j.learninstruc.2012.03.001Google ScholarGoogle ScholarCross RefCross Ref
  40. Anastasia Ioannidi, Damianos Gavalas, and Vlasios Kasapakis. 2017. Flaneur: Augmented exploration of the architectural urbanscape. In Symposium on Computers and Communications (ISCC). IEEE, 529--533. https://doi.org/10.1109/ISCC.2017.8024582Google ScholarGoogle ScholarCross RefCross Ref
  41. Charalabos Ioannidis, Styliani Verykokou, Sofia Soile, and Argyro Maria Boutsi. 2020. A Multi-purpose Cultural Heritage Data Platform for 4D Visualization and Interactive Information Services. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences , Vol. XLIII-B4--2020 (2020), 583--590. https://doi.org/10.5194/isprs-archives-XLIII-B4--2020--583--2020Google ScholarGoogle Scholar
  42. Dan-Vladimir Ivanovici and Daniela Mondini. 2014. Manipulating light in pre-modern times. Architectural, artistic and philosophical aspects . Mendrisio.Google ScholarGoogle Scholar
  43. Simon James. 2015. 'Visual competence' in archaeology: a problem hiding in plain sight. Antiquity , Vol. 89, 347 (Oct. 2015), 1189--1202. https://doi.org/10.15184/aqy.2015.60Google ScholarGoogle ScholarCross RefCross Ref
  44. Sabrina Kahl, Franziska Walter, and Katharina Zinke. 2006. Höhenwahrnehmung von Gebäuden: Methoden, Gestaltungsstufen und Expertise . Report. Technische Universität Dresden.Google ScholarGoogle Scholar
  45. Zoi Kapoula, Gintautas Daunys, Olivier Herbez, and Qing Yang. 2009. Effect of Title on Eye-Movement Exploration of Cubist Paintings by Fernand Léger. Perception , Vol. 38, 4 (2009), 479--491. https://doi.org/10.1068/p6080Google ScholarGoogle ScholarCross RefCross Ref
  46. KhronosGroup. 2021. glTF -- Runtime 3D Asset Delivery. https://www.khronos.org/gltf Retrieved July 19, 2021 fromGoogle ScholarGoogle Scholar
  47. Kangsoo Kim, Byung-Kuk Seo, Jae-Hyek Han, and Jong-Il Park. 2009. Augmented Reality Tour System for Immersive Experience of Cultural Heritage. In Proceedings of the 8th International Conference on Virtual Reality Continuum and Its Applications in Industry (Yokohama, Japan). ACM, New York, NY, USA, 323--324. https://doi.org/10.1145/1670252.1670325 Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Kevin Klamert and Sander Münster. 2017. Child's Play -- A Literature-Based Survey on Gamified Tools and Methods for Fostering Public Participation in Urban Planning. In Electronic Participation , , Peter Parycek, Yannis Charalabidis, Andrei V. Chugunov, Panos Panagiotopoulos, Theresa A. Pardo, Øystein Sæbø, and Efthimios Tambouris (Eds.). Springer International Publishing, Cham, 24--33. https://doi.org/10.1007/978--3--319--64322--9_3Google ScholarGoogle Scholar
  49. Harald Klinke. 2018. Digital Space and Architecture. Journal for Digital Art History , Vol. 3 (July 2018).Google ScholarGoogle Scholar
  50. Piotr Kuroczy'ski, Peter Bell, and Lisa Dieckmann. 2018. Digital Art History .arthistoricum.net, Heidelberg. https://doi.org/10.11588/arthistoricum.413Google ScholarGoogle Scholar
  51. Piotr Kuroczy'ski, Mieke Pfarr-Harfst, and Sander Münster. 2019. Der Modelle Tugend 2.0: Digitale 3D-Rekonstruktion als virtueller Raum der architekturhistorischen Forschung .arthistoricum.net, Heidelberg. https://doi.org/10.11588/arthistoricum.515Google ScholarGoogle Scholar
  52. Helmut Leder, Claus-Christian Carbon, and Ai-Leen Ripsas. 2006. Entitling art: Influence of title information on understanding and appreciation of paintings. Acta Psychologica , Vol. 121, 2 (Feb. 2006), 176--198. https://doi.org/10.1016/j.actpsy.2005.08.005Google ScholarGoogle ScholarCross RefCross Ref
  53. Dominik Lengyel and Catherine Toulouse. 2011. Darstellung von unscharfem Wissen in der Rekonstruktion historischer Bauten. In Von Handaufmaß bis High Tech III. 3D in der historischen Bauforschung , , Katja Heine, Klaus Rheidt, Frank Henze, and Alexandra Riedel (Eds.). Verlag Philipp von Zabern, Darmstadt, 182--186.Google ScholarGoogle Scholar
  54. LimeSurvey. 2021. LimeSurvey -- Easy online survey tool. https://www.limesurvey.org/ Retrieved July 19, 2021 fromGoogle ScholarGoogle Scholar
  55. W. Fredrick Limp. 2009. Towards a strategy for evaluating heritage visualizations. In Proceedings of the 37th Computer Applications and Quantitative Methods in Archaeology Conference .Google ScholarGoogle Scholar
  56. Max Limper, Stefan Wagner, Christian Stein, Yvonne Jung, and André Stork. 2013. Fast Delivery of 3D Web Content: A Case Study. In Proceedings of the 18th International Conference on 3D Web Technology (Web3D '13). ACM, 11--17. https://doi.org/10.1145/2466533.2466536 Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Ursula Luna, Pilar Rivero, and Naiara Vicent. 2019. Augmented Reality in Heritage Apps: Current Trends in Europe. Applied Sciences , Vol. 9, 13 (2019), 2756. https://doi.org/10.3390/app9132756Google ScholarGoogle ScholarCross RefCross Ref
  58. Tino Mager. 2019. ArchiMediaL -- Enriching and linking historical architectural and urban image collections. http://archimedial.eu/ Retrieved July 19, 2021 fromGoogle ScholarGoogle Scholar
  59. Ferdinand Maiwald, Jonas Bruschke, Christoph Lehmann, and Florian Niebling. 2019. A 4D information system for the exploration of multitemporal images and maps using photogrammetry, web technologies and VR/AR. Virtual Archaeology Review , Vol. 10, 21 (2019), 1--13. https://doi.org/10.4995/var.2019.11867Google ScholarGoogle ScholarCross RefCross Ref
  60. Ferdinand Maiwald and Hans-Gerd Maas. 2021. An automatic workflow for orientation of historical images with large radiometric and geometric differences. The Photogrammetric Record , Vol. 36, 174 (2021), 77--103. https://doi.org/10.1111/phor.12363Google ScholarGoogle ScholarCross RefCross Ref
  61. Ferdinand Maiwald, Danilo Schneider, Frank Henze, Sander Münster, and Florian Niebling. 2018. Feature Matching of Historical Images Based on Geometry of Quadrilaterals. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences , Vol. XLII-2 (2018), 643--650. https://doi.org/10.5194/isprs-archives-XLII-2--643--2018Google ScholarGoogle Scholar
  62. Ferdinand Maiwald, Theresa Vietze, Danilo Schneider, Frank Henze, Sander Münster, and Florian Niebling. 2017. Photogrammetric Analysis of Historical Image Repositories for Virtual Reconstruction in the Field of Digital Humanities. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences , Vol. XLII-2/W3 (2017), 447--452. https://doi.org/10.5194/isprs-archives-XLII-2-W3--447--2017Google ScholarGoogle Scholar
  63. John C. Mankins. 1995. Technology Readiness Levels: A White Paper .Advanced Concepts Office, Office of Space Access and Technology, NASA.Google ScholarGoogle Scholar
  64. Eric Margolis and Luc Pauwels. 2011. The SAGE Handbook of Visual Research Methods. https://doi.org/10.4135/9781446268278Google ScholarGoogle Scholar
  65. Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duckworth. 2021. NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections. In Proceedings of the Conference on Computer Vision and Pattern Recognition . 7210--7219.Google ScholarGoogle ScholarCross RefCross Ref
  66. Max-Planck-Gesellschaft. 2018. 4DReply: Closing the 4D Real World Reconstruction Loop. https://cordis.europa.eu/project/id/770784 Retrieved July 19, 2021 fromGoogle ScholarGoogle Scholar
  67. Paul Milgram, Haruo Takemura, Akira Utsumi, and Fumio Kishino. 1995. Augmented Reality: a class of displays on the reality-virtuality continuum. In Telemanipulator and Telepresence Technologies, Hari Das (Ed.). SPIE, 282--292. https://doi.org/10.1117/12.197321Google ScholarGoogle Scholar
  68. Sander Münster. 2018. Cultural Heritage at a Glance : Four case studies about the perception of digital architectural 3D models. In 3rd Digital Heritage International Congress (DigitalHERITAGE) held jointly with 24th International Conference on Virtual Systems Multimedia (VSMM). IEEE, 1--4. https://doi.org/10.1109/DigitalHeritage.2018.8810066Google ScholarGoogle ScholarCross RefCross Ref
  69. Sander Münster, Christopher Lehmann, Taras Lazariv, Ferdinand Maiwald, and Mathias Hofmann. in print. Toward an Automated Processing Pipeline for a Browser-based, City-scale Mobile 4D VR Application Based on Historical Images. In Proceedings of the 2nd UHDL Workshop , , Florian Niebling and Sander Münster (Eds.). Springer International Publishing, Cham.Google ScholarGoogle Scholar
  70. Sander Münster, Ferdinand Maiwald, Christoph Lehmann, Taras Lazariv, Mathias Hofmann, and Florian Niebling. 2020. An Automated Pipeline for a Browser-based, City-scale Mobile 4D VR Application based on Historical Images. In Proceedings of the 2nd Workshop on Structuring and Understanding of Multimedia heritAge Contents. ACM, New York, NY, USA, 33--40. https://doi.org/10.1145/3423323.3425748 Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Joschka Mütterlein and Thomas Hess. 2017. Immersion, Presence, Interactivity: Towards a Joint Understanding of Factors Influencing Virtual Reality Acceptance and Use. In Proceedings of the 23rd Americas Conference on Information Systems (AMCIS). Bosten, MA.Google ScholarGoogle Scholar
  72. Jack L. Nasar. 1994. Urban Design Aesthetics: The Evaluative Qualities of Building Exteriors. Environment and Behavior , Vol. 26, 3 (1994), 377--401. https://doi.org/10.1177/001391659402600305Google ScholarGoogle ScholarCross RefCross Ref
  73. Andreas Noback and Stephen Wittkopf. 2014. Complex Material Models in Radiance: Grand Challenges in Cultural Heritage Visualization. In Proceedings of the 13th International Radiance Workshop (London, UK).Google ScholarGoogle Scholar
  74. Hyeonwoo Noh, Andre Araujo, Jack Sim, Tobias Weyand, and Bohyung Han. 2017. Large-Scale Image Retrieval with Attentive Deep Local Features. In International Conference on Computer Vision (ICCV). IEEE, 3476--3485. https://doi.org/10.1109/ICCV.2017.374Google ScholarGoogle Scholar
  75. Paul C. Nutt and David C. Wilson. 2010. Handbook of Decision Making .Wiley-Blackwell, Oxford.Google ScholarGoogle Scholar
  76. Iliana Ortega-Alcázar. 2012. Visual Research Methods. In International Encyclopedia of Housing and Home , , Susan J. Smith (Ed.). Elsevier, San Diego, 249--254. https://doi.org/10.1016/B978-0-08-047163--1.00693--7Google ScholarGoogle Scholar
  77. Eleftheria Paliou. 2018. Visual Perception in Past Built Environments: Theoretical and Procedural Issues in the Archaeological Application of Three-Dimensional Visibility Analysis. In Digital Geoarchaeology: New Techniques for Interdisciplinary Human-Environmental Research, Christoph Siart, Markus Forbriger, and Olaf Bubenzer (Eds.). Springer International Publishing, Cham, 65--80. https://doi.org/10.1007/978--3--319--25316--9_5Google ScholarGoogle Scholar
  78. Valerio Palma, Roberta Spallone, and Marco Vitali. 2019. Digital Interactive Baroque Atria in Turin: A Project Aimed to Sharing and Enhancing Cultural Heritage. In Proceedings of the 1st International and Interdisciplinary Conference on Digital Environments for Education, Arts and Heritage. Springer International Publishing, Cham, 314--325. https://doi.org/10.1007/978--3-030--12240--9_34Google ScholarGoogle ScholarCross RefCross Ref
  79. Gabriele Peters. 2007. Aesthetic Primitives of Images for Visualization. In Proceedings of the 11th International Conference on Information Visualisation. 316--325. https://doi.org/10.1109/IV.2007.20 Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Corrado Petrucco and Daniele Agostini. 2016. Teaching Cultural Heritage using Mobile Augmented Reality. Journal of e-Learning and Knowledge Society , Vol. 12, 3 (June 2016), 115--128.Google ScholarGoogle Scholar
  81. Roser Pintó and Jaume Ametller. 2002. Students' difficulties in reading images. Comparing results from four national research groups. International Journal of Science Education , Vol. 24, 3 (2002), 333--341. https://doi.org/10.1080/09500690110078932Google ScholarGoogle ScholarCross RefCross Ref
  82. Lukas Platinsky, Michal Szabados, Filip Hlasek, Ross Hemsley, Luca Del Pero, Andrej Pancik, Bryan Baum, Hugo Grimmett, and Peter Ondruska. 2020. Collaborative Augmented Reality on Smartphones via Life-long City-scale Maps. In International Symposium on Mixed and Augmented Reality (ISMAR) . 533--541. https://doi.org/10.1109/ISMAR50242.2020.00081Google ScholarGoogle ScholarCross RefCross Ref
  83. Martina Polig, Despina G. Papacharalambous, Nikolas Bakirtzis, and Sorin Hermon. 2021. Assessing Visual Perception in Heritage Sites with Visual Acuity: Case study of the Cathedral of St. John the Theologian in Nicosia, Cyprus. Journal on Computing and Cultural Heritage , Vol. 14, 1 (Feb. 2021). https://doi.org/10.1145/3417710 Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Lilian Pozzer-Ardenghi and Wolff-Michael Roth. 2005. Making sense of photographs. Science Education , Vol. 89, 2 (2005), 219--241. https://doi.org/10.1002/sce.20045Google ScholarGoogle ScholarCross RefCross Ref
  85. Iñaki Prieto and Jose Luis Izkara. 2012. Visualization of 3D City models on mobile devices. In Proceedings of the 17th International Conference on 3D Web Technology (Web3D '12). ACM, New York, NY, USA, 101--104. https://doi.org/10.1145/2338714.2338731 Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Roya Rahimi, Azizul Hassan, and Ozlem Tekin. 2017. Augmented Reality Apps for Tourism Destination Promotion. In Apps Management and E-Commerce Transactions in Real-Time, Rezaei Sajad (Ed.). IGI Global, Hershey, PA, USA, 236--251. https://doi.org/10.4018/978--1--5225--2449--6.ch011Google ScholarGoogle Scholar
  87. Lutz Raphael. 2012. Geschichtswissenschaften im Zeitalter der Extreme: Theorien, Methoden, Tendenzen von 1900 bis zur Gegenwart .C.H. Beck, München.Google ScholarGoogle Scholar
  88. Ali Sharif Razavian, Josephine Sullivan, Stefan Carlsson, and Atsuto Maki. 2016. Visual Instance Retrieval with Deep Convolutional Networks. ITE Transactions on Media Technology and Applications , Vol. 4, 3 (2016), 251--258. https://doi.org/10.3169/mta.4.251Google ScholarGoogle ScholarCross RefCross Ref
  89. Ulf-Dietrich Reips. 2002. Internet-Based Psychological Experimenting: Five Dos and Five Don'ts. Social Science Computer Review , Vol. 20, 3 (2002), 241--249. https://doi.org/10.1177/089443930202000302 Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Álvaro Rodríguez Miranda and José M. Valle Melón. 2017. Recovering Old Stereoscopic Negatives and Producing Digital 3d Models of Former Appearances of Historic Buildings. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences , Vol. XLII-2/W3 (2017), 601--608. https://doi.org/10.5194/isprs-archives-XLII-2-W3--601--2017Google ScholarGoogle Scholar
  91. Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. 2020. SuperGlue: Learning Feature Matching With Graph Neural Networks. In Proceedings of the Conference on Computer Vision and Pattern Recognition. IEEE, 4937--4946. https://doi.org/10.1109/CVPR42600.2020.00499Google ScholarGoogle ScholarCross RefCross Ref
  92. Axel Schaffland, Tri Hiep Bui, Oliver Vornberger, and Gunther Heidemann. 2020. New Interactive Methods for Image Registration with Applications in Repeat Photography. In Proceedings of the 2nd Workshop on Structuring and Understanding of Multimedia HeritAge Contents (Seattle, WA, USA) (SUMAC'20). ACM, New York, NY, USA, 41--48. https://doi.org/10.1145/3423323.3425749 Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Grant Schindler and Frank Dellaert. 2012. 4D Cities: Analyzing, Visualizing, and Interacting with Historical Urban Photo Collections. Journal of Multimedia , Vol. 7, 2 (2012), 124--131. https://doi.org/10.4304/jmm.7.2.124--131Google ScholarGoogle ScholarCross RefCross Ref
  94. Christoph Schinko, Ulrich Krispel, Robert Gregor, Tobias Schreck, and Torsten Ullrich. 2019. Generative Modellierung -- Verknüpfung von Wissen und Form. In Der Modelle Tugend 2.0: Digitale 3D-Rekonstruktion als virtueller Raum der architekturhistorischen Forschung (Computing in Art and Architecture), , Piotr Kuroczy'ski, Mieke Pfarr-Harfst, and Sander Münster (Eds.). arthistoricum.net, Heidelberg, 295--311. https://doi.org/10.11588/arthistoricum.515.c7575Google ScholarGoogle Scholar
  95. Johannes L. Schönberger and Jan-Michael Frahm. 2016. Structure-from-Motion Revisited. In Proceedings of the Conference on Computer Vision and Pattern Recognition. IEEE, 4104--4113. https://doi.org/10.1109/CVPR.2016.445Google ScholarGoogle Scholar
  96. Herbert A. Simon. 1990. Invariants of human behavior. Annual Review of Psychology , Vol. 41 (1990), 1--19.Google ScholarGoogle ScholarCross RefCross Ref
  97. Mikael B. Skov, Jesper Kjeldskov, Jeni Paay, Niels Husted, Jacob Nørskov, and Kenneth Pedersen. 2013. Designing on-site: Facilitating participatory contextual architecture with mobile phones. Pervasive and Mobile Computing , Vol. 9, 2 (April 2013), 216--227. https://doi.org/10.1016/j.pmcj.2012.05.004 Google ScholarGoogle ScholarDigital LibraryDigital Library
  98. Noah Snavely, Steven M. Seitz, and Richard Szeliski. 2006. Photo Tourism: Exploring Photo Collections in 3D. ACM Transactions on Graphics , Vol. 25, 3 (2006), 835--846. https://doi.org/10.1145/1141911.1141964 Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Pelle Snickars. 2019. Metamodeling -- 3D-(re)designing Polhem's Laboratorium mechanicum. In Der Modelle Tugend 2.0: Digitale 3D-Rekonstruktion als virtueller Raum der architekturhistorischen Forschung (Computing in Art and Architecture), Piotr Kuroczy'ski, Mieke Pfarr-Harfst, and Sander Münster (Eds.). arthistoricum.net, Heidelberg, 509--528. https://doi.org/10.11588/arthistoricum.515.c7590Google ScholarGoogle Scholar
  100. Gregory C. Stanczak. 2007. Visual Research Methods .SAGE Publications, Thousand Oaks, CA. https://doi.org/10.4135/9781412986502Google ScholarGoogle Scholar
  101. Alexander Styhre. 2010. Disciplining professional vision in architectural work. Practices of seeing and seeing beyond the visual. The Learning Organization , Vol. 17, 5 (2010), 437--454. https://doi.org/10.1108/09696471011059822Google ScholarGoogle ScholarCross RefCross Ref
  102. M. Claudia tom Dieck and Timothy Jung. 2018. A Theoretical Model of Mobile Augmented Reality Acceptance in Urban Heritage Tourism. Current Issues in Tourism , Vol. 21, 2 (2018), 154--174. https://doi.org/10.1080/13683500.2015.1070801Google ScholarGoogle ScholarCross RefCross Ref
  103. Mercedes Torres and Guoping Qiu. 2011. Picture the Past From the Present. In 3rd International Conference on Internet Multimedia Computing and Service. ACM, 51--54. https://doi.org/10.1145/2043674.2043690 Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. Barbara Tversky. 2002. Spatial Schemas in Depictions. In Spatial Schemas and Abstract Thought , , Merideth Gattis (Ed.). MIT Press, Cambridge, MA, 79--112.Google ScholarGoogle Scholar
  105. Barbara Tversky. 2005. Visuospatial Reasoning. In he Cambridge Handbook of Thinking and Reasoning , , Keith J. Holyoak and Robert G. Morrison (Eds.). Cambridge University Press, Cambridge, 209--240.Google ScholarGoogle Scholar
  106. Micha? J. Tyszkiewicz, Pascal Fua, and Eduard Trulls. 2020. DISK: Learning local features with policy gradient. arXiv preprint arXiv:2006.13566 (2020).Google ScholarGoogle Scholar
  107. Frank A. van den Heuvel. 2002. Reconstruction from a single architectural image from the Meydenbauer archives. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences , Vol. 34 (2002), 699--706.Google ScholarGoogle Scholar
  108. Naiara Vicent, M.ª Pilar Rivero Gracia, and María Feliu Torruella. 2015. Arqueología y tecnologías digitales en Educación Patrimonial. Educatio Siglo XXI , Vol. 33, 1 Marzo (2015), 83--102. https://doi.org/10.6018/j/222511Google ScholarGoogle ScholarCross RefCross Ref
  109. ViMM. 2018. Manifesto for Digital Cultural Heritage .Google ScholarGoogle Scholar
  110. ViMM WG 2.2. 2017. Meaningful Content connected to the Real World (Report) .Google ScholarGoogle Scholar
  111. Gerd-Helge Vogel. 2019. Die Sichtbarmachung des Unsichtbaren: -sthetische Konventionen in Rekonstruktionsmodellen. In Der Modelle Tugend 2.0: Digitale 3D-Rekonstruktion als virtueller Raum der architekturhistorischen Forschung (Computing in Art and Architecture), Piotr Kuroczy'ski, Mieke Pfarr-Harfst, and Sander Münster (Eds.). arthistoricum.net, Heidelberg, 98--122. https://doi.org/10.11588/arthistoricum.515.c7447Google ScholarGoogle Scholar
  112. Denny Vrande?i? and Markus Krötzsch. 2014. Wikidata: a free collaborative knowledgebase. Commun. ACM , Vol. 57, 10 (2014), 78--85. https://doi.org/10.1145/2629489 Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. Johan Wagemans. 2015. Historical and conceptual background: Gestalt theory. In The Oxford Handbook of Perceptual Organization, Johan Wagemans (Ed.). Oxford University Press, Oxford. https://doi.org/10.1093/oxfordhb/9780199686858.013.026Google ScholarGoogle Scholar
  114. Jo Wood, Petra Isenberg, Tobias Isenberg, Jason Dykes, Nadia Boukhelifa, and Aidan Slingsby. 2012. Sketchy Rendering for Information Visualization. IEEE Transactions on Visualization and Computer Graphics , Vol. 18, 12 (2012), 2749--2758. https://doi.org/10.1109/TVCG.2012.262 Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. Changchang Wu. 2013. Towards linear-time incremental structure from motion. In International Conference on 3D Vision. IEEE, 127--134. https://doi.org/10.1109/3DV.2013.25 Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Albena Yaneva. 2005. Scaling Up and Down: Extraction Trials in Architectural Design. Social Studies of Science , Vol. 35, 6 (2005), 867--894. https://doi.org/10.1177/0306312705053053Google ScholarGoogle ScholarCross RefCross Ref
  117. Dorota Zawieska and Jakub Markiewicz. 2016. Development of Photogrammetric Documentation of the Borough at Biskupin Based on Archival Photographs -- First Results. In Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection , , Marinos Ioannides, Eleanor Fink, Antonia Moropoulou, Monika Hagedorn-Saupe, Antonella Fresa, Gunnar Liestøl, Vlatka Rajcic, and Pierre Grussenmeyer (Eds.). Springer International Publishing, Cham, 3--9. https://doi.org/10.1007/978--3--319--48974--2_1Google ScholarGoogle Scholar

Index Terms

  1. Software and Content Design of a Browser-based Mobile 4D VR Application to Explore Historical City Architecture

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SUMAC'21: Proceedings of the 3rd Workshop on Structuring and Understanding of Multimedia heritAge Contents
      October 2021
      56 pages
      ISBN:9781450386685
      DOI:10.1145/3475720

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 20 October 2021

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate5of6submissions,83%

      Upcoming Conference

      MM '24
      MM '24: The 32nd ACM International Conference on Multimedia
      October 28 - November 1, 2024
      Melbourne , VIC , Australia

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader