skip to main content
10.1145/3475723.3484248acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
research-article

Modeling 3D Objects: Implications for Neuroscience, Behavioral and Medical Studies: A Case Demo

Authors Info & Claims
Published:25 November 2021Publication History

ABSTRACT

We have designed, developed and adapted 3D objects (3DOs) within the interactive environment for in-lab neuroscience research of motor control and the mirror neuron system (MNS) (Figure 1b; 3D view: https://p3d.in/0B202). The modeled 3DOs are implemented in an experimental design with hand movements. We have combined video hand motion capture, associative learning, immersive reality, 'mirror therapy' and non-invasive brain stimulation (NIBS) methods in order to explore the effects of functional motor activity of the MNS. We are proposing to explore the effects of functional motor activity of the MNS for further application with advanced NIBS protocols. This system demo for studying MNS is an example of the research which is spread widely in neuroscience, behavioral and medical studies. It included the implementation of a human-object-interaction in 3D reality. The 3DOs' models and hand movements are available for any research purposes (Figure 1a) [1].

Skip Supplemental Material Section

Supplemental Material

References

  1. Github: 3D models hand set (HuMA21). Retrieved August 9, 2021 from URL: https://github.com/toandreyhse/HuMA21/Google ScholarGoogle Scholar
  2. Cristina Nuzzi, Simone Pasinetti, Roberto Pagani, Stefano Ghidini, Manuel Beschi, Gabriele Coffetti, Giovanna Sansoni. 2021. MEGURU: a gesture-based robot program builder for Meta-Collaborative workstations. Robotics and Computer-Integrated Manufacturing, 68, 102085. doi: 10.1016/j.rcim.2020.102085Google ScholarGoogle ScholarCross RefCross Ref
  3. Renan H. Matsuda, Viktor H. Souza, V.D. Araki, Glauco A. Caurin, Oswaldo Baffa. 2020. An open-source platform for collaborative robots' for navigated TMS. Clinical Neurophysiol., 131 (4), e108. doi: 10.1016/j.clinph.2019.12.278Google ScholarGoogle ScholarCross RefCross Ref
  4. Jeff G. Grab, Ephrem Zewdie, Helen L. Carlson, Hsing-Ching Kuo, Patrick Ciechanski, Jacquie Hodge, Adrianna Giuffre, Adam Kirton. 2018. Robotic TMS mapping of motor cortex in the developing brain. Journal of Neuroscience Methods, 309, 41--54. doi: 10.1016/j.jneumeth.2018.08.007Google ScholarGoogle ScholarCross RefCross Ref
  5. Shailesh S. Kantak, L. Jones-Lush, Min Zhan, J. Lush, P. Narayanan, S. McCombe Waller, and George F. Wittenberg. 2013. Plasticity in TMS-evoked movements with robotic reach training. Neurophysiologie Clinique/ Clinical Neurophysiology, 43 (1), 71--72. doi: 10.1016/j.neucli.2012.11.015Google ScholarGoogle ScholarCross RefCross Ref
  6. Achim Buerkle, William Eaton, Niels Lohse, Thomas Bamber, Pedro Ferreira. 2021. EEG based arm movement intention recognition towards enhanced safety in symbiotic Human-Robot Collaboration. Robotics and Computer-Integrated Manufacturing, 70, 102137. doi: 10.1016/j.rcim.2021.102137Google ScholarGoogle ScholarCross RefCross Ref
  7. Michela Bassolino, Matteo Franza, J. Bello Ruiz, Mattia Pinardi, T. Schmidlin, M. A. Stephan, Marko Solca, Andrea Serino, O. Blanke. 2018. Non-invasive brain stimulation of motor cortex induces embodiment when integrated with virtual reality feedback. European Journal of Neuroscience, 47 (7), 790--799. doi: 10.1111/ejn.13871Google ScholarGoogle ScholarCross RefCross Ref
  8. Raymundo Cassani, Guilherme S. Novak, Tiago H. Falk, and Alcyr A. Oliveira. 2020. Virtual reality and non-invasive brain stimulation for rehabilitation applications: a systematic review. Journal of NeuroEngineering and Rehabilitation, 17(1). 147. doi: 10.1186/s12984-020-00780--5Google ScholarGoogle ScholarCross RefCross Ref
  9. Chan-Juan Zheng, Wei-Jing Liao, Wen-Guang Xia. 2015. Effect of combined low-frequency repetitive transcranial magnetic stimulation and virtual reality training on upper limb function in subacute stroke: a double-blind randomized controlled trail. Journal of Huazhong University of Science and Technology, 35 (2), 248--54. doi: 10.1007/s11596-015--1419-0Google ScholarGoogle ScholarCross RefCross Ref
  10. Julia M. Juliano, Ryan P. Spicer, Athanasios Vourvopoulos, Stephanie Lefebvre, Kay Jann, Tyler Ard, Emiliano Santarnecchi, David M. Krum, Sook-Lei Liew. 2020. Embodiment Is Related to Better Performance on a Brain--Computer Interface in Immersive Virtual Reality: A Pilot Study. Sensors, 20 (4), 1204. doi: 10.3390/s20041204Google ScholarGoogle ScholarCross RefCross Ref
  11. Nessa N. Johnson, James Carey, Bradley J. Edelman, Alexander Doud, Andrew Grande, Kamakshi Lakshminarayan, Bin He. 2018. Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke. J Neural Eng., 15 (1), 016009. doi: 10.1088/1741--2552/aa8ce3Google ScholarGoogle ScholarCross RefCross Ref
  12. Caroline Catmur, Vincent Walsh, Cecilia Heyes. 2007. Sensorimotor learning configures the human mirror system. Curr. Biol., 17, 1527--1531. doi: 10.1016/j.cub.2007.08.006Google ScholarGoogle ScholarCross RefCross Ref
  13. Luciano Fadiga, Leonardo Fogassi, Giovanni Pavesi, and Giacomo Rizzolatti. 1995. Motor facilitation during action observation: a magnetic stimulation study. J. Neurophysiol., 73(6), 2608--11. doi: 10.1152/jn.1995.73.6.2608.Google ScholarGoogle ScholarCross RefCross Ref
  14. Matteo Feurra, Evgeny Blagovechtchenski, Vadim V. Nikulin, Maria Nazarova, Anna Lebedeva, Daria Pozdeeva, Maria Yurevich, and Simone Rossi. 2019. State-Dependent Effects of Transcranial Oscillatory Currents on the Motor System during Action Observation. Sci. Rep., 9, 12858. doi: 10.1038/s41598-019--49166--1Google ScholarGoogle ScholarCross RefCross Ref
  15. Clare Press, Caroline Catmur, Richard Cook, Hannah Widmann, Cecilia Heyes, Geoffrey Birm. 2012. fMRI Evidence of 'Mirror' Responses to Geometric Shapes. PLoS ONE, 7(12): e51934. doi: 10.1371/journal.pone.0051934Google ScholarGoogle ScholarCross RefCross Ref
  16. Marco Iacoboni, Istvan Molnar-Szakacs, Vittorio Gallese, Giovanni Buccino, John C. Mazziotta, Giacomo Rizzolatti. 2005. Grasping Intentions with Mirror Neurons. PLoS Biol., 3(3), e79. doi: 10.1371/journal.pbio.0030079Google ScholarGoogle ScholarCross RefCross Ref
  17. Sandro M. Krieg, Pantelis Lioumis, Jyrki P. Mäkelä, Juha Wilenius, Jari Karhu, Henri Hannula, Petri Savolainen, Carolin Weiss Lucas, Kathleen Seidel, Aki Laakso, Mominul Islam, Selja Vaalto, Henri Lehtinen, Anne-Mari Vitikainen, Phiroz E. Tarapore, Thomas Picht. 2017. Protocol for motor and language mapping by navigated TMS in patients and healthy volunteers; workshop report. Acta Neurochir (Wien), 159, 1187--1195. doi: 10.1007/s00701-017--3187-zGoogle ScholarGoogle ScholarCross RefCross Ref
  18. Paolo Maria Rossini, A.T. Barker, A. Berardelli, M.D. Caramia, G. Caruso, R.Q. Cracco, M.R. Dimitrijevi?, M. Hallett, Y. Katayama, C.H. Lücking. 1994. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Cinical Neurophysiol., 91, 79--92. doi: 10.1016/0013--4694(94)90029--9Google ScholarGoogle ScholarCross RefCross Ref
  19. Simone Rossi, Andrea Antal, Sven Bestmann, Marom Bikson, Carmen Brewer, Jürgen Brockmöller, Linda L. Carpenter, Massimo Cincotta, Robert Chen, Jeff D. Daskalakis, Vincenzo Di Lazzaro, Michael D. Fox, Mark S. George, Donald Gilbert, Vasilios K. Kimiskidis, Giacomo Koch, Risto J. Ilmoniemi, Jean Pascal Lefaucheur, Letizia Leocani, Sarah H. Lisanby, Carlo Miniussi, Frank Padberg, Alvaro Pascual-Leone, Walter Paulus, Angel V. Peterchev, Angelo Quartarone, Alexander Rotenberg, John Rothwell, Paolo M. Rossini, Emiliano Santarnecchi, Mouhsin M. Shafi, Hartwig R. Siebner, Yoshikatzu Ugawa, Eric M. Wassermann, Abraham Zangen, Ulf Ziemann, Mark Hallett. 2021. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clinical Neurophysiol., 132 (1), 269--306. doi: 10.1016/j.clinph.2020.10.003Google ScholarGoogle ScholarCross RefCross Ref
  20. Vinsent Taschereau-Dumouchel, Sebastien Hetu, Pierre-Emmanuel Michon, Etienne Vachon-Presseau, Elsa Massicotte, Louis De Beaumont, Shirley Fecteau, Judes Poirier, Catherine Mercier, Yvon C. Chagnon, Philip Jackson. 2016. BDNF Val66Met Polymorphism Influences Visuomotor Associative Learning and the Sensitivity to Action Observation. Sci. Rep., 6, 34907. doi: 10.1038/srep34907Google ScholarGoogle ScholarCross RefCross Ref
  21. Michela Bassolino, Martina Campanella, Marco Bove, Thierry Pozzo, and Luciano Fadiga. 2013. Training the Motor Cortex by Observing the Actions of Others During Immobilization. Cerebral Cortex, 24 (12), 3268--76. doi: 10.1093/cercor/bht190Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Modeling 3D Objects: Implications for Neuroscience, Behavioral and Medical Studies: A Case Demo

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        HUMA'21: Proceedings of the 2nd International Workshop on Human-centric Multimedia Analysis
        November 2021
        50 pages
        ISBN:9781450386715
        DOI:10.1145/3475723
        • General Chairs:
        • Wu Liu,
        • Junbo Guo,
        • John Smith,
        • Program Chairs:
        • Xinchen Liu,
        • Dingwen Zhang,
        • Wenbing Huang

        Copyright © 2021 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 25 November 2021

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Upcoming Conference

        MM '24
        MM '24: The 32nd ACM International Conference on Multimedia
        October 28 - November 1, 2024
        Melbourne , VIC , Australia
      • Article Metrics

        • Downloads (Last 12 months)14
        • Downloads (Last 6 weeks)3

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader