
Tension optimization of the 6-DOF cable-driven boat motion
simulator

Joonyoung Jang∗
Mechanical and Aerospace Engineering Department,

University of California, San Diego, 9500 Gilman Dr, La
Jolla, CA 92093, USA

Thomas R. Bewley
Mechanical and Aerospace Engineering Department,

University of California, San Diego, 9500 Gilman Dr, La
Jolla, CA 92093, USA

ABSTRACT
The 6 degrees of freedom cable-driven boat motion simulator has
eight cables and a moving platform in replicating the boat motion.
The platform is connected to cables and is moved by adjusting
the length of the cables. The simulator has more cables than its
degrees of freedom is defined as an underdetermined system, which
means the tension solution is not unique and can be optimized
while controlling the platform to the desired position. Leveraging
the equilibrium condition and the dynamic equation of tensegrity
systems, linearized equations of motion of the moving platform
were derived. A Linear Matrix Inequality (LMI)-based controller
design and a convex optimization validated to stabilizing the system
and optimizing cable tensions. A simulation model is suggested to
verify optimized cable tension solutions and the feasibility of the
LMI based controller.
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1 INTRODUCTION
Vertical take-off and landing (VTOL) drones are ubiquitously used
as low-price assets, easy to maneuver. In naval operations, drones
can expand the reconnaissance and surveillance range of ships.
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Figure 1: The design of the 6-DOF cable-driven boat motion
simulator. Eight cables connect to themoving platform, con-
trolling the length of cables, replicating a boat’s motion for
at-sea testing drone landing controllers.

However, landing at sea is challenging because the landing plat-
forms are moving by waves. Thus, a boat motion simulator is use-
ful for developing sea landing controllers and confirming drones’
landing ability. The boat motion simulator allows for land-based
testing, seducing cost and risk [1]. The Stewart platform mecha-
nism provides a 6-DOF capability using six identical stretchable
rods and spherical joints. However, the moving platform has a lim-
ited workspace range due to its complicated mechanical system
[2]. The 3-PSR Parallel mechanism was developed for replicating
boat motion [1], but its upper structure obstructs any drone landing
capabilities. Motivated by Max Planck’s CableRobot Simulator [3],
a cable-driven tensegrity system is proposed, as shown in Figure
1. By adjusting the length of cables connected to the moving plat-
form, the platform can be moved in 6-DOF with high acceleration
and accuracy [4]. Prior research discussed various challenges with
cable-driven systems, including workspace analysis [5, 6], the cable
collisions detection algorithm [7]. These cable-driven systems show
the benefits of the simplicity of kinematics and its application. A
proportional–derivative controller (PD) is used for dynamic con-
trol of cable-driven systems [8–10]. However, the PD controller’s
derivative term amplifies noise in the system and causes actuator
oscillations [11].

One significant feature of cable-driven systems is that cables
only can pull an object but cannot push it. Thus, cable tensions
have to be positive for the robust and stable motion simulations.
Specifically, low cable tensions induce slack in cables and potential
system failure. High cable tensions can damage the mechanical
structure. A cable-driven system having more cables than its DOF
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is called an underdetermined system, in which cable tension so-
lutions are not unique. Although, cable lengths at every state of
the platform can be calculated by inverse kinematics [12], optimal
tension solutions need to be considered. Other research used the
null space of the static equation solution to calculate feasible ca-
ble tension solutions [4, 13]. However, for a dynamically moving
platform, tension optimization needs to be performed within the
control system. A cable-driven motion simulator can be defined as
a tensegrity system with multiple bars and cables. The analysis of
the tensegrity system’s statics and dynamics is a useful method to
characterize the forces in bars and cables [14]. The stabilization of
a multi-tethered balloon used the tensegrity analysis to find the
optimal design to keep all cables taut even there exist disturbances
such as winds [15]. To achieve the tension optimization in the con-
trol system, a linearized tensegrity dynamics equation that is in
terms of cable tensions was used.

To control the platform motion, the LMI-based controller was
designed because it can express a variety of design specifications
by setting up constraints [16]. Moreover, the LMI-based control
design has less vibrating and guarantees better system response
stability than the conventional Linear Quadratic Regulator (LQR)
controller design [17].

In this paper, we used the tensegrity system statics and dynamics
to analyze a cable-driven boat motion simulator and discussed the
optimization of cable tensions. Furthermore, instead of using a PD
controller, we applied an LMI-based controller with a linearized
system derived from the tensegrity system dynamics. The simu-
lation model was developed to validate the tension solutions and
LMI-based controller. This paper is organized as follows. Section
II analyzes a cable-driven simulator as a tensegrity system and
discusses tension optimization. In Section III, the linearized system
is derived from dynamic equations of motions, and the feedback
control system is developed. In Section IV, the simulation result is
discussed. Section V is the conclusion.

Tensegrity system analysis

1.1 Tables equilibrium of the tensegrity system
Cable-driven systems include cables and bars defined as members.
The connecting points of members are defined as nodes. Members
and nodes are denoted as the vectors of,

M =
[
®m1, · · · , ®mp

]
, N =

[
®n1, · · · , ®nq

]
where p and q are the number of the members and nodes, respec-
tively. Eachmember vector is defined as difference of two connected
node vectors, such that ®mi = ®nj − ®mk , where i ∈ {1, · · · ,p} and
j,k ∈ {1, · · · ,q}. Thus, the relation between the member and node
vectors can be written by defining the p × q connectivity matrix C
[12],

M = NCT

Each i-th row of C corresponds to each ®mi has one entry equal
to 1 and one entry equal to -1, and all other entries equal to zero.
Define the sum of gravitational and inertial forces on the nodes
as F and the internal forces applied by members as I. Let ®di be a
unit member vector, and ®xi be a tensile or compressive force in a
member. Then, the unit member and forces can be written [13],

D =
[
®d1, · · · , ®dp

]
, X = diaд(x1, · · · ,xp )

The internal forces at each node can be defined in terms of X by
using the connectivity matrix, such that,

I = DXC

Using the Newton’s law, the forces at each node can be written
as,

F =
[
®F1, · · · , ®Fp

]
=

( Z∑
i=1

mi (®ai + ®д) /Z

)
p

wheremi is the mass, ®ai is the acceleration vector of i-th member,
®д is the gravitational acceleration vector, Z is the number of nodes
i-th member has. Figure 2 shows all the forces exerted on a node.

At equilibrium, forces in each node are balanced. The equation
can be written,

F = I → F = DXC (1)

Recall that X is the diagonal matrix of tension or compression
force of each member, indicating that X represents the forces in the
bars and cables. Thus, cable tensions can be calculated by solving
equation 1) for X [13]. The right-hand side of equation 1) is a linear
equation of [x1, · · · ,xp ], so that the equation can be rewritten
in the form of a linear matrix equation in terms of vector ®x =
[x1, · · · ,xp ]T ,

A®x = ®f (2)

where ®f is forces on each node, defined as ®f = [f1, · · · , fp ]T .

1.2 Tension solution
Tension solutions can be obtained by solving equation 2). The Sin-
gular Value Decomposition (SVD) of the matrix A = U ΣVH , where
U and V are unitary matrices, Σ is the diagonal matrix consisting
of singular values of A, and VH defines the conjugate transpose of
matrix V . Assuming that the rank of A is r , then by definition, the
SVD of A becomes [18],

A = [U
−m×r

Ūm×(m−r )]

[
Σ
− r×r

0
0 0

]
[V
−n×r

V̄n×(n−r )]
H

The underdetermined system, which has more cables than its
DOF, has an infinite number of solutions for ®x . Recall that V̄ is the
null space of A and (2) can be rewritten,

A(®x + V̄h) = ®f

where h is an arbitrary vector. The solution ®x can be obtained by,

®x = A+ ®f + V̄h (3)

where A+ is the pseudo-inverse matrix of A. ®x is the internal force
vector in each bar and cable defined as,

®x =

[
β
τ

]
(4)

where β is the force in the bars, and τ is cable tensions.
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Figure 2: Free body diagram of the tensegrity system. Two members are connected to node 1 and each member has two nodes.
At node 1, the total force is the sum of the gravitation and inertial forces of two members. The forces of members are exerted
uniformly at each node. The internal force (blue) is the sum of tension or compression forces applied bymembers (

−→
d1x1,

−→
d2x2).

Figure 3: A typical tension graph as in time. The red dashed lines, (τmin ,τmax ), are tension limits the blue dashed line, (τave ),
is the mean value of tension limits. The black solid lines, (min(τ ),max(τ )), are the minimum and the maximum tensions and
(λt,min , λt,max ) are the tension margins at time t .

1.3 Tension optimization
As shown in Figure 3, cable tensions changes in time as the platform
moves to the desired position. Cable tensions need to be maintained
in the boundary to prevent cables being slack or damaged, such
that,

τmin ≤ τ ≤ τmax

where τmin is theminimum tension limit, and τmax is themaximum
tension limit.

Defining the lower and the upper bound tension margins,
(λt,min , λt,max ) as the difference between the tension limits
(τmin ,τmax ), and the minimum and the maximum tensions
(min(τ ),max(τ )). A system with larger tension margins has more
capability of moving the platform to the tension limits. Tensions are
required to be optimized around the mean value of the minimum
and the maximum tension limits to maximize the tension margins.
Recall that V̄ is the null space of A, so that variable h can be opti-
mized. Maximizing tension margins is equivalent to minimizing
the standard deviation of tensions relative to τave . Leveraging the
equation of standard deviation, the optimization problem can be

written as a convex problem as follows,

minimize

√∑m
i=1 (τi − τave )

2

b
(5)

subject to τmin ≤ τ ≤ τmax

τave = (τmin + τmax )/2

®x = A+ ®f + V̄h
where b is the number of cables. The optimal value h∗ is de-

termined by solving equation 5) [19]. To solve such a problem, a
convex problem solver, such as CVX is needed [20]. The optimized
force vector ®x∗ can be calculated by using equation 3). Recall that
®x∗ = [β1

∗, · · · , βa
∗,τ1∗, · · · ,τb

∗]T with a, the number of bars, and
b, the number of cables. Finally, the optimized tension solution
becomes,

τ ∗ = [τ1
∗, · · · ,τb

∗]T (6)

1.4 Cable length equation
Note that the platform can be moved by adjusting the length of
cables. Namely, the experimental system needs motors to change
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the length of cables, and motor signals are derived by cable length
changes. Thus, cable lengths need to be calculated to actuate the
motors. Cable lengths, U, can be determined by using the following
equation [13],

U =
κ
���®l ���

τ + κ
(7)

whereκ is the cable stiffness, |l| is the distance between cable attach-
ment points on the platform and the starting points of cables. The
optimized cable tension was derived by (6), then the corresponding
cable length U ∗ can be determined by applying τ ∗ to equation 7).

2 DYNAMICS AND CONTROLS
2.1 Dynamic equation
The translational equations of motion of the platform can be calcu-
lated by solving Newton’s equation,

mÜr = ®fc + ®д → Ür = ( ®fc + ®д)/m (8)

where Ür is the acceleration vector of the platform, ®fc is the sum of
the forces applied by cables connected to the platform, and ®д is the
gravitational force. Similarly, the rotational equations of motion of
the platform are solved using Euler’s rotation equation,

Icm Ûω +ω × Icmω = ®tc → Ûω = (®tc −ω × Icmω)/Icm (9)

where Ûω is the time derivative of angular velocity vector, ®tc is the
total torque from cable tensions, and Icm is the moment of inertia
of the platform. By definition, the torque, ®tc can be written as,

®tc = ®nB × ( ®fc )
B

where ®nB and ( ®fc )
B are the node and force vectors in the body

frame. The body frame is anchored in the center of the platform.
The force vector in the body frame can be written in terms of the
force vector in the original frame,

( ®fc )
B = R−1 ®fc

where R is the 3-2-1 Tait-Bryan rotation matrix and ®fc is the force
vector in the original frame. The torque of the platform becomes,

®tc = ®nB × R−1 ®fc

2.2 Linearization
The translational equation of motion, equation 8), and rotational
equation of motion equation 9), can be converted to matrix form as
[21], [

®fc
®tc

]
+

[
®д
0

]
=

[
mI 0
0 Icm

] [
Ür
Ûω

]
+

[
0

ω × Icmω

]
Rearranging the equation about (Ür , Ûω) yields,[

Ür
Ûω

]
=

[
mI 0
0 Icm

]−1 ( [
®fc
®tc

]
+

[
®д
0

]
−

[
0

ω × Icmω

] )
(10)

Defining the state vectorX = [r Ûr Θ ω]with Θ, the rotation angles,
equation 10) can be written as,

ÛX =


Ûr
Ür
ω
Ûω

 =


Ûr
(mI )−1( ®fc + ®д)

ω
Icm

−1(®tc − ω × Icmω)



Recall that ®fc is the sum of the forces on the platform applied by
cables. Thus, ®fc can be written as,

®fc =
b∑

k=1

®fc,k

where ®fc,k is the force applied by k-th cable. Let all the forces at
nodes applied by cables be Fc = [ ®fc,1, · · · , ®fc,b ]. Fc can be described
in terms of cable tensions, τ [13],

Fc = DcTCc

where Dc is the unit cable vector set, T = diaд( τ 1, · · · , τ b ) is
the diagonal matrix of tensions, and Cc is the cable connectivity
matrix. Note that Dc is determined by the platform state X , and τ
is the function of cable lengthU as defined in equation 7). Thus, ÛX
is a function of X and U , denoted as ÛX = f (X ,U ). Similarly, define
the output as Y = ĈX . The output of the system is the state of the
platform. Hence, Ĉ is an identity matrix and the output vector can
be written as,

Y = X = д(X ,U )

Finally, the system realization can be determined by Jacobian ma-
trices as follows [22],

Â =
∂ f (Xeq ,Ueq )

∂X
, B̂ =

∂ f (Xeq ,Ueq )

∂U

Ĉ =
∂д(Xeq ,Ueq )

∂X
, D̂ =

∂д(Xeq ,Ueq )

∂U
(11)

Xeq andUeq are the position and cable length at the equilibrium,
relatively. Specifically, Xeq is the desired position, and theUeq is
cable lengths calculated by equation 7) corresponding to optimized
tension τ ∗.

2.3 Feedback control model
Leveraging the linearized system, the feedback control system can
be modeled as shown in Figure 4. The system input is the desired
position and the output is the platform position. The algorithm of
the system consists of three steps as follows.

2.3.1 LMI-based controller. Based on the system realizations cal-
culated by equation 11), the controller gain K can be designed. In
Lyapunov theory, the linearized feedback system is stable if and
only if there exists a positive definite symmetric matrix, P > 0,
such that [23],

(Â + B̂K)T P + P(Â + B̂K) < 0 (12)

where Â and B̂ are system realizations derived by equation 11). This
inequality, called Lyapunov inequality, is a form of an LMI [23].
Introducing variables Q = P−1, and L = KP−1, equation 12) can be
rewritten as [24],

QÂT + ÂQ + LT B̂T + B̂L < 0 (13)

Obtaining Q and L by solving the inequality, one can find a
feasible controller gain that stabilizes the system, such that K = LP
[25]. Equation 13) can be solved by an LMI solver such as YALMIP
[26]. The LMI-based controller takes the position error X̃ = X −Xeq
and generates the system input Ũ = KX̃ . Since the equilibrium
platform position Xeq and cable length Ueq change in time, the
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Figure 4: Feedback control system diagram.

Figure 5: The figure of the 6-DOF cable-driven simulation model. The outer structure (green) is a cube. Cables (black) are
connected to a rectangular shape moving platform (red). The platform moves in 6-DOF motion over time

system is defined as a time-variant system. Thus, the controller
gain is required to be updated at every time step.

2.3.2 Optimization of cable tensions. The optimal variable h∗and
the optimized cable tension τ ∗ was derived in Section 2.3. The
corresponding cable lengthU ∗ represents the optimal cable length
at the equilibrium point, such that Ueq = U ∗. The equilibrium
cable lengthUeq is used to obtain the linearized system denoted at
equation 11).

2.3.3 System. The system realization is derived from equation
11) and the controller was designed from equation 13). Thus, the
feedback state-space can be written,

dX̃

dt
= ÂX̃ + B̂Ũ

dX̃

dt
=

(
Â + B̂K

)
X̃ (14)

The output of the state-space model is X̃ . Since X̃ is the difference
between the desired position and the current position, the platform
position becomes X = X̃ +Xeq and X is sent back to the system as
a feedback.

3 SIMULATION RESULT
3.1 Simulation model description
The purpose of the simulation model is to verify the tension solu-
tions and the feasibility of the LMI-based controller. As shown in
Figure 5, the edges of the outer structure cube are 1m. The simu-
lation model has eight cables connected to the moving platform.
The mass of the platform is 1kg, and its mass center is the center of
the platform. The platform is 0.1m flat square plate and has four
attachment points in the corners. The minimum tension limit was
set to 10N and the maximum as 100N. Initially, the platform is lo-
cated in the center of the structure, and the initial velocity is zero.
Simulation time is t=10 seconds. The platform moves in 6-DOF
motion following the desired trajectory.

3.2 Analysis of the results
Figure 6, 7 illustrate the translational and rotational motion of
the platform. The platform motion is achieved by adjusting the
length of cables. The length of cables is controlled by the LMI-based
controller presented in Section 3.3. The average of the root mean
square errors (RMSE) of position and rotation were 5.34×10−4 and
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Figure 6: Translational motion of the platform. Motion in x-axis(surge) is red, in y-axis(sway) is blue, and in z-axis(heave) is
green. Dashed lines are desired positions, and solid lines are controlled positions. Surge and sway changes from -5 to 5cm,
heave changes -10 to 10cm. Surge and heave periods are 10 seconds, and sway is 5 seconds.

Figure 7: Rotational motion of the platform. Rotation in x-axis (roll) is red, in y-axis (pitch) is blue, and in z-axis (yaw) is red.
Dashed lines are desired rotations, and solid lines are controlled rotations. Roll and pitch changes from -20 to 20 degrees, yaw
changes -2 to 2 degrees. Roll and yaw periods are 5 seconds, and pitch is 10 seconds.

Figure 8: Optimized cable tension. The blue lines are lower cables and the red lines are upper cable. Black dashed lines are the
minimum tension limit (10N), and the maximum tension limit (100N). The green line is the mean value of the minimum and
the maximum tension limits (55N).

2.85×10−3, showing that the LMI-based controller robustly controls
the system.

The standard deviation optimization method discussed in Sec-
tion 2.3 optimized cable tensions at each platform position. The
minimum cable tension was 12.32N, and the maximum tension
was 75.76N. Figure 8 shows that cable tensions are bounded in the
minimum and the maximum tensions while the platform is moving.
As shown in Figure 9, corresponding cable lengths were calculated
by equation 7).

Defining the possible maximum tension margin as the differ-
ence between the maximum and the minimum tension limits, the
percentage of tension margins to the possible maximum tension
margin is shown in Figure 10. The lower bound tension margin

percentage was from 2.58% to 47.79% and the upper bound tension
margin was from 26.93% to 47.79%.

These results verify that the LMI-based controller design con-
trols the platform in 6-DOF motion robustly, and the optimization
method maintains positive tension margins while controlling the
platform.

4 CONCLUSION
In this paper, the tension optimization of an LMI-based controlled 6-
DOF cable-driven boat motion simulator was presented. This study
focuses on verifying the feasibility of an LMI-based controller on the
linearized system model and the tension optimization of the model.
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Figure 9: Cable length corresponding to cable tensions in Figure 8. The blue lines are lower cables, and the red lines are upper
cables. The green line is a cable length at the origin..

Figure 10: Tensionmargin percentage to the possible maximum tensionmargin (90N). The red line is the upper bound tension
margin, and the blue line is the lower bound tension margin.

Eight cables were connected to a platform that moves in 6-DOF
motion and the platform replicates the motion of the boat on the
sea. Leveraging the tensegrity system theory, statics and dynamics
of the 6-DOF cable-driven system were analyzed, and an LMI-based
feedback control model was developed. An LMI-based feedback
controller is designed based on the time-variant linearized system
that changes by the equilibrium position and cable lengths. The
6-DOF cable-driven system simulation shows that the LMI-based
controller robustly controls the motion of the platform following
the desired trajectory. The desired trajectory includes 6-DOF mo-
tions, but the simulator cannot rotate in z-axis (yaw) compared to
the rotation in x (roll) or y-axis (pitch) due to the cable attachment
points on the platform. This problem can be solved by crossed ca-
ble attachment points on the platform. Adjusting the attachment
points and redesigning the platform for larger workspace will be
discussed in future work. Additionally, the standard deviation opti-
mization method maintained cable tensions within the tension limit
boundaries. The corresponding cable length was computed from
the optimized tension for the actual motor control. Tension mar-
gins were positive, indicating that all cables are in positive tensions
while the platform is moving. We plan to build an experimental
6-DOF cable-driven boat motion simulator with tension sensors to
validate the simulation results. The actual data of ship motions will
be used to generate desired trajectories.
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