skip to main content
10.1145/3476446.3535473acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
tutorial

Applications of Computer Algebra to Parameter Analysis of Dynamical Systems

Published:05 July 2022Publication History

ABSTRACT

The purpose of this article is to present some recent applications of computer algebra to answer structural and numerical questions in applied sciences. A first example concerns identifiability which is a pre-condition for safely running parameter estimation algorithms and obtaining reliable results. Identifiability addresses the question whether it is possible to uniquely estimate the model parameters for a given choice of measurement data and experimental input. As discussed in this paper, symbolic computation offers an efficient way to do this identifiability study and to extract more information on the parameter properties. A second example addressed hereafter is the diagnosability in nonlinear dynamical systems. The diagnosability is a prior study before considering diagnosis. The diagnosis of a system is defined as the detection and the isolation of faults (or localization and identification) acting on the system. The diagnosability study determines whether faults can be discriminated by the mathematical model from observations. These last years, the diagnosability and diagnosis have been enhanced by exploitting new analytical redundancy relations obtained from differential algebra algorithms and by the exploitation of their properties through computer algebra techniques.

References

  1. Stefania Audoly, Giuseppina Bellu, Leontina D'Angió, Maria Saccomani, and Claudio Cobelli. Global identifiability of nonlinear models of biological systems. IEEE Transactions on Bio-medical Engineering, 48:55--65, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  2. Giuseppina Bellu, Maria Saccomani, Stefania Audoly, and Leontina D'Angiò. DAISY: A new software tool to test global identifiability of biological and physiological systems. Computer Methods and Programs in Biomedicine, 28 (1):52--61, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  3. Upinder S. Bhalla and James M. Bower. Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. Journal of Neurophysiology, 69(6):1948--1965, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  4. François Boulier. Study and implementation of some algorithms in differential algebra. PhD thesis, Université des Sciences et Technologie de Lille - Lille I, June 1994.Google ScholarGoogle Scholar
  5. François Boulier, Daniel Lazard, François Ollivier, and Michel Petitot. Computing representation for radicals of finitely generated differential ideals. Technical report, Université Lille I, LIFL, 59655, Villeneuve d'Ascq, 1997.Google ScholarGoogle Scholar
  6. Christopher W. Brown. QEPCAD B: A program for computing with semialgebraic sets using CADs. SIGSAM BULLETIN, 37:97--108, 2003.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Michael J. Chapman, Keith R. Godfrey, Michael J. Chappell, and Neil D. Evans. Structural identifiability of nonlinear systems using linear/nonlinear splitting. International Journal of Control, 76:209--216, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  8. Michael J. Chappell and Keith R. Godfrey. Structural identifiability of the parameters of a nonlinear batch reactor model. Mathematical Biosciences, 108:245--251, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  9. Changbo Chen, James H. Davenport, John P. May, Marc Moreno Maza, Bican Xia, and Rong Xiao. Triangular decomposition of semi-algebraic systems. Journal of Symbolic Computation, 49:3--26, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. David Cox, John Little, and Donal O'Shea. Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra. 2nd ed. 03 2015.Google ScholarGoogle Scholar
  11. Dávid Csercsik, Katalin M. Hangos, and Gábor Szederkényi. Identifiability analysis and parameter estimation of a single Hodgkin--Huxley type voltage dependent ion channel under voltage step measurement conditions. Neurocomputing, 77(1):178--188, 2012.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Lilianne Denis-Vidal and Ghislaine Joly-Blanchard. Equivalence and identifiability analysis of uncontrolled nonlinear dynamical systems. Automatica, 40:287--292, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Lilianne Denis-Vidal, Ghislaine Joly-Blanchard, and Céline Noiret. Some effective approaches to check identifiability of uncontrolled nonlinear systems. Mathematics and Computers in Simulation, 57:35--44, 2001.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Lilianne Denis-Vidal, Ghislaine Joly-Blanchard, Céline Noiret, and Michel Petitot. An algorithm to test identifiability of non-linear systems. In Proceedings of 5th IFAC Symposium on Nonlinear Control Systems, volume 7, pages 174--178, St Petersburg, Russia, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  15. Sette Diop and Michel Fliess. Nonlinear observabiliy, identifiability and persistant trajectories. In Proceedings of the 30th IEEE Conference on Decision and Control, pages 714--719, Brighton, UK, 1991.Google ScholarGoogle Scholar
  16. Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ISSAC '02, page 75--83, New York, NY, USA, 2002. Association for Computing Machinery.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Michel Fliess and Torkel Glad. An algebraic approach to linear and nonlinear control. In Essays on control: perspectives in the theory and it application, volume 7, pages 223--267, Cambridge, MA, Birkhauser, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  18. James L. Hindmarsh and R.M. Rose. A model of the nerve impulse using two first-order differential equations. Nature, 296(5853):162--164, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  19. James L. Hindmarsh and R.M. Rose. A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal Society of London B: Biological Sciences, 221(1222):87--102, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  20. Alan L. Hodgkin and Andrew F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4):500--544, 1952.Google ScholarGoogle ScholarCross RefCross Ref
  21. Hoon Hong, Alexey Ovchinnikov, Gleb Pogudin, and Chee Yap. Global identifiability of differential models. Communications on Pure and Applied Mathematics, 73(9):1831--1879, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  22. Eugene M. Izhikevich. Which model to use for cortical spiking neurons? IEEE transactions on neural networks, 15(5):1063--1070, 2004.Google ScholarGoogle Scholar
  23. Eugene M. Izhikevich. Dynamical Systems in Neuroscience. MIT press, 2007.Google ScholarGoogle Scholar
  24. David Janzén, Mats Jirstrand, Michael Chappell, and Neil Evans. Three novel approaches to structural identifiability analysis in mixed-effects models. Computer Methods and Programs in Biomedicine, 171:141--152, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Jack Lee, Bruce H. Smaill, and Nicolas Smith. Hodgkin--Huxley type ion channel characterization: an improved method of voltage clamp experiment parameter estimation. Journal of Theoretical Biology, 242(1):123--134, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  26. Lennart Ljung and Torkel Glad. On global identifiability for arbitrary model parametrizations. Automatica, 30:265--276, 1994.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Nicolette Meshkat, Chris Anderson, and Joseph J. DiStefano III. Finding identifiable parameter combinations in nonlinear ODE models and the rational reparameterization of their input-output equations. Mathematical Biosciences, 233(1):19--31, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  28. Nicolette Meshkat, Marisa Eisenberg, and Joseph J. DiStefano III. An algorithm for finding globally identifiable parameter combinations of nonlinear ODE models using Groebner Bases. Mathematical Biosciences, 222(2):61--72, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  29. Alexey Ovchinnikov, Anand Pillay, Gleb Pogudin, and Thomas Scanlon. Computing all identifiable functions of parameters for ODE models. Systems & Control Letters, 157:105030, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  30. Hannu Pohjanpalo. System identifiability based on the power series expansion of the solution. Mathematical Biosciences, 41:21--33, 1978.Google ScholarGoogle ScholarCross RefCross Ref
  31. Maria Saccomani, Stefania Audoly, Giuseppina Bellu, and Leontina D'Angiò. Examples of testing global identifiability of biological and biomedical models with the DAISY software. Computers in Biology and Medicine, 40 (4):402--407, 2010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Maria Saccomani, Stefania Audoly, and Leontina D'Angiò. Parameter identifiability of nonlinear systems: the role of initial conditions. Automatica, 39:619--632, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Mohab Safey El Din. RAGLib (Real Algebraic Geometry Library). Available at https://www-polsys.lip6.fr/ safey/RAGLib, 2007.Google ScholarGoogle Scholar
  34. Mohab Safey El Din. Testing sign conditions on a multivariate polynomial and applications. Mathematics in Computer Science, 1:177--207, 12 2007.Google ScholarGoogle ScholarCross RefCross Ref
  35. Andreas Schaefer, Moritz Helmstaedter, Bert Sakmann, and Alon Korngreen. Correction of conductance measurements in non-space-clamped structures: 1. Voltage-gated K+ channels. Biophysical Journal, 84(6):3508--3528, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  36. Hans Stigter and Jaap Molenaar. A fast algorithm to assess local structural identifiability. Automatica, 58:118--124, 2015.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Michael Vanier and James Bower. A comparative survey of automated parametersearch methods for compartmental neural models. Journal of Computational Neuroscience, 7(2):149--171, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  38. Nathalie Verdière and Sébastien Orange. Diagnosability in the case of multifaults in nonlinear models. Journal of Process Control, 69, 2018.Google ScholarGoogle Scholar
  39. Nathalie Verdière, Lilianne Denis-Vidal, Ghislaine, and Dominique Domurado. Identifiability and estimation of pharmacokinetic parameters of ligands of macrophage mannose receptor. International Journal of Applied Maths and Computer Science, 15, 2005.Google ScholarGoogle Scholar
  40. Nathalie Verdière and Sébastien Orange. A systematic approach for doing an a priori identifiability study of dynamical nonlinear models. Mathematical Biosciences, 308:105--113, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  41. Eric Walter and Yves Lecourtier. Global approaches to identifiability testing for linear and nonlinear state space models. Mathematics and Computers in Simulation, 24:472--482, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  42. Allan Willms, Deborah Baro, Ronald Harris-Warrick, and John Guckenheimer. An improved parameter estimation method for Hodgkin-Huxley models. Journal of Computational Neuroscience, 6(2):145--168, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  43. Bican Xia. DISCOVERER: a tool for solving semi-algebraic systems. ACM Communications in Computer Algebra, 41(3):102--103, 09 2007.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Applications of Computer Algebra to Parameter Analysis of Dynamical Systems

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ISSAC '22: Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation
      July 2022
      547 pages
      ISBN:9781450386883
      DOI:10.1145/3476446

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 July 2022

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • tutorial

      Acceptance Rates

      Overall Acceptance Rate395of838submissions,47%
    • Article Metrics

      • Downloads (Last 12 months)14
      • Downloads (Last 6 weeks)1

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader