skip to main content
10.1145/3476446.3535487acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Local Polynomial Factorisation: Improving the Montes Algorithm

Authors Info & Claims
Published:05 July 2022Publication History

ABSTRACT

We improve significantly the Nart-Montes algorithm for factoring polynomials over a complete discrete valuation ring A. Our first contribution is to extend the Hensel lemma in the context of generalised Newton polygons, from which we derive a new divide and conquer strategy. Also, if A has residual characteristic zero or high enough, we prove that approximate roots are convenient representatives of types, leading finally to an almost optimal complexity both for irreducibility and factorisation issues, plus the cost of factorisations above the residue field. For instance, to compute an OM-factorisation of F∈A[x], we improve the complexity results of [3] by a factor δ, the discriminant valuation of F.

References

  1. Sheeram Abhyankar. 1990. Algebraic Geometry for Scientists and Engineers. Mathematical surveys and monographs, Vol. 35. Amer. Math. Soc.Google ScholarGoogle Scholar
  2. Jens-Dietrich Bauch. 2016. Computation of integral bases. Journal of Number Theory 165 (2016), 382--407. https://doi.org/10.1016/j.jnt.2016.01.011Google ScholarGoogle ScholarCross RefCross Ref
  3. Jens-Dietrich Bauch, Enric Nart, and Hayden Stainsby. 2013. Complexity of the OM Factorizations of Polynomials over Local Fields. LMS Journal of Computation and Mathematics 16 (2013), 139--171.Google ScholarGoogle ScholarCross RefCross Ref
  4. D. G. Cantor and D. Gordon. 2000. Factoring polynomials over p-adic fields. In ANTS-IV (LNCS, Vol. 1838). Springer Verlag.Google ScholarGoogle Scholar
  5. Xavier Caruso, David Roe, and Tristan Vaccon. 2016. Division and Slope Factorization of p-Adic Polynomials. In Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation (Waterloo, ON, Canada) (ISSAC '16). ACM, New York, NY, USA, 159--166. https://doi.org/10.1145/2930889.2930898Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. D. Ford, S. Pauli, and X.-F. Roblot. 2002. A Fast Algorithm for Polynomial Factorization over Qp. Journal de Théorie des Nombres de Bordeaux 14 (2002), 151--169.Google ScholarGoogle Scholar
  7. Joachim von zur Gathen and Jürgen Gerhard. 2013. Modern Computer Algebra (3rd ed.). Cambridge University Press, New York, NY, USA.Google ScholarGoogle Scholar
  8. Jordi Guàrdia, Jesús Montes, and Enric Nart. 2010. Okutsu invariants and Newton polygons. Acta Arithmetica 145 (2010), 83--108.Google ScholarGoogle ScholarCross RefCross Ref
  9. Jordi Guàrdia, Jesús Montes, and Enric Nart. 2011. Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields. Journal de Théorie des Nombres de Bordeaux 23, 3 (2011), 667--696. https://doi.org/10.5802/jtnb.782Google ScholarGoogle ScholarCross RefCross Ref
  10. Jordi Guàrdia, Jesús Montes, and Enric Nart. 2012. Newton polygons of higher order in algebraic number theory. Trans. Amer. Math. Soc. 364 (2012), 361--416.Google ScholarGoogle ScholarCross RefCross Ref
  11. Jordi Guàrdia, Jesús Montes, and Enric Nart. 2013. Arithmetic in big number fields: The '+Ideals' package. arXiv: 1005.4596v1[math.NT] (2013).Google ScholarGoogle Scholar
  12. Jordi Guàrdia, Jesús Montes, and Enric Nart. 2013. A new computational approach to ideal theory in number fields. Foundations of Computational Mathematics 13 (2013), 729--762.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Jordi Guàrdia, Enric Nart, and Sebastian Pauli. 2012. Single-factor lifting and factorization of polynomials over local fields. Journal of Symbolic Computation 47, 11 (2012), 1318--1346. https://doi.org/10.1016/j.jsc.2012.03.001Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. William Hart and Andrew Novocin. 2011. Practical Divide-and-Conquer Algorithms for Polynomial Arithmetic. In Computer Algebra in Scientific Computing, Vladimir P. Gerdt, Wolfram Koepf, Ernst W. Mayr, and Evgenii V. Vorozhtsov (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 200--214.Google ScholarGoogle Scholar
  15. F. Hess. 2002. Computing Riemann--Roch spaces in algebraic function fields and related topics. Journal of Symbolic Computation 33, 4 (2002), 425--445. https://doi.org/10.1006/jsco.2001.0513Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Joris van der Hoeven and Grégoire Lecerf. 2020. Directed evaluation. Journal of Complexity 60 (2020), 101498.Google ScholarGoogle ScholarCross RefCross Ref
  17. Joris van der Hoeven and Grégoire Lecerf. 2022. Univariate polynomial factorization over finite fields with large extension degree. Applicable Algebra in Engineering, Communication and Computing (2022). https://doi.org/10.1007/s00200-021-00536--1Google ScholarGoogle Scholar
  18. Erich Kaltofen. 1988. Greatest Common Divisors of Polynomials Given by Straight-line Programs. J. ACM 35, 1 (1988), 231--264. https://doi.org/10.1145/42267.45069Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Romain Lebreton. 2015. Relaxed Hensel lifting of triangular sets . Journal of Symbolic Computation 68, Part 2 (2015), 230 -- 258. https://doi.org/10.1016/j.jsc.2014.09.012 Effective Methods in Algebraic Geometry.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Saunders Mac Lane. 1936. A construction for prime ideals as absolute values of an algebraic field. Duke Math. J. 2, 3 (1936), 492--510. https://doi.org/10.1215/S0012-7094--36-00243-0Google ScholarGoogle Scholar
  21. Saunders MacLane. 1936. A construction for absolute values in polynomial rings. Trans. Amer. Math. Soc. 40, 3 (1936), 363--395. https://doi.org/10.2307/1989629Google ScholarGoogle ScholarCross RefCross Ref
  22. Guillaume Moroz and Éric Schost. 2016. A Fast Algorithm for Computing the Truncated Resultant. In ISSAC '16: Proceedings of the twenty-first international symposium on Symbolic and algebraic computation (Waterloo, Canada). ACM, New York, NY, USA, 1--8. https://doi.org/10.1145/2930889.2930931Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Enric Nart. 2011. Okutsu-Montes representations of prime ideals of onedimensional integral closures. Publicacions Matematiques - PUBL MAT 55 (07 2011). https://doi.org/10.5565/PUBLMAT_55211_01Google ScholarGoogle Scholar
  24. Enric Nart. 2014. LOCAL COMPUTATION OF DIFFERENTS AND DISCRIMINANTS. Math. Comp. 83, 287 (2014), 1513--1534.Google ScholarGoogle ScholarCross RefCross Ref
  25. V. Neiger, J. Rosenkilde, and É. Schost. 2017. Fast Computation of the Roots of Polynomials Over the Ring of Power Series. In ISSAC'17. ACM, 349--356.Google ScholarGoogle Scholar
  26. S. Pauli. 2001. Factoring polynomials over local fields. J. Symb. Comp. 32 (2001), 533--547.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Pauli. 2010. Factoring polynomials over local fields, II. In ANTS-IX (LNCS). Springer Verlag.Google ScholarGoogle Scholar
  28. P. Popescu-Pampu. 2002. Approximate roots. Fields Institute Communiations 33 (2002), 1-37.Google ScholarGoogle Scholar
  29. Adrien Poteaux and Martin Weimann. 2020. Computing the equisingularity type of a pseudo-irreducible polynomial. Applicable Algebra in Engineering, Communication and Computing 31 (2020), 435 -- 460.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Adrien Poteaux and Martin Weimann. 2021. Computing Puiseux series: a fast divide and conquer algorithm. Annales Henri Lebesgue 4 (2021), 1061--1102. https://doi.org/10.5802/ahl.97Google ScholarGoogle ScholarCross RefCross Ref
  31. A. Poteaux and M.Weimann. 2022. A quasi-linear irreducibility test inK[[X]][Y]. To appear in Computational Complexity (2022), 1--52.Google ScholarGoogle Scholar
  32. Martin Weimann. 2017. Bivariate Factorization Using a Critical Fiber. Found. Comput. Math. 17, 5 (2017), 1219--1263. https://doi.org/10.1007/s10208-016--9318--8Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Local Polynomial Factorisation: Improving the Montes Algorithm

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      ISSAC '22: Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation
      July 2022
      547 pages
      ISBN:9781450386883
      DOI:10.1145/3476446

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 July 2022

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate395of838submissions,47%
    • Article Metrics

      • Downloads (Last 12 months)9
      • Downloads (Last 6 weeks)1

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader