skip to main content
10.1145/3477495.3532679acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
tutorial

Deep Knowledge Graph Representation Learning for Completion, Alignment, and Question Answering

Published: 07 July 2022 Publication History

Abstract

A knowledge graph (KG) has nodes and edges representing entities and relations. KGs are central to search and question answering (QA), yet research on deep/neural representation of KGs, as well as deep QA, have moved largely to AI, ML and NLP communities. The goal of this tutorial is to give IR researchers a thorough update on the best practices of neural KG representation and inference from AI, ML and NLP communities, and then explore how KG representation research in the IR community can be better driven by the needs of search, passage retrieval, and QA. In this tutorial, we will study the most widely-used public KGs, important properties of their relations, types and entities, best-practice deep representations of KG elements and how they support or cannot support such properties, loss formulations and learning methods for KG completion and inference, the representation of time in temporal KGs, alignment across multiple KGs, possibly in different languages, and the use and benefits of deep KG representations in QA applications.

References

[1]
R. Abboud, I. I. Ceylan, T. Lukasiewicz, and T. Salvatori. BoxE: A box embedding model for knowledge base completion. NeurIPS, abs/2007.06267, 2020. URL https://arxiv.org/pdf/2007.06267.pdf.
[2]
A. Asai, K. Hashimoto, H. Hajishirzi, R. Socher, and C. Xiong. Learning to retrieve reasoning paths over wikipedia graph for question answering. ICLR, abs/1911.10470, 2020.
[3]
K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collaboratively created graph database for structuring human knowledge. In SIGMOD Conference, pages 1247--1250, 2008. URL http://ids.snu.ac.kr/w/images/9/98/sc17.pdf.
[4]
A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating embeddings for modeling multi-relational data. In NIPS, pages 2787--2795, 2013. URL http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf.
[5]
M. Chen, Y. Tian, M. Yang, and C. Zaniolo. Multilingual knowledge graph embeddings for cross-lingual knowledge alignment. In IJCAI, 2017. URL https://arxiv.org/pdf/1611.03954.pdf.
[6]
M. Cornolti, P. Ferragina, M. Ciaramita, S. Rued, and H. Schuetze. The SMAPH system for query entity recognition and disambiguation. In ERD Challenge Workshop, 2014. URL https://research.google.com/pubs/archive/42720.pdf.
[7]
S. S. Dasgupta, S. N. Ray, and P. P. Talukdar. HyTE: Hyperplane-based temporally aware knowledge graph embedding. In EMNLP Conference, 2018. URL https://www.aclweb.org/anthology/D18--1225.pdf.
[8]
S. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman. Indexing by latent semantic analysis. Journal of the Society for Information Science, 41 (6): 391--407, 1990. URL https://www.cs.bham.ac.uk/ pxt/IDA/lsa_ind.pdf.
[9]
J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In NAACL Conference, 2019. URL https://www.aclweb.org/anthology/N19--1423.pdf.
[10]
gneul, and Hofmann]GaneaBH2018HyperbolicO.-E. Ganea, G. Bécigneul, and T. Hofmann. Hyperbolic entailment cones for learning hierarchical embeddings. arXiv preprint arXiv:1804.01882, 2018. URL https://arxiv.org/pdf/1804.01882.pdf.
[11]
R. Goel, S. M. Kazemi, M. A. Brubaker, and P. Poupart. Diachronic embedding for temporal knowledge graph completion. In AAAI Conference, 2020. URL https://arxiv.org/pdf/1907.03143.pdf.
[12]
and Chakrabarti]JainRMC2020TimePlexP. Jain, S. Rathi, Mausam, and S. Chakrabarti. Temporal knowledge base completion: New algorithms and evaluation protocols. EMNLP Conference, abs/2005.05035, 2020. URL https://arxiv.org/abs/2005.05035.
[13]
Z. Jia, S. Pramanik, R. S. Roy, and G. Weikum. Complex temporal question answering on knowledge graphs. CIKM, 2021. URL https://dl.acm.org/doi/pdf/10.1145/3459637.3482416.
[14]
M. Joshi, U. Sawant, and S. Chakrabarti. Knowledge graph and corpus driven segmentation and answer inference for telegraphic entity-seeking queries. In EMNLP Conference, pages 1104--1114, 2014. URL http://www.emnlp2014.org/papers/pdf/EMNLP2014117.pdf. Data http://bit.ly/1OCKbVW.
[15]
V. Krishnan, S. Das, and S. Chakrabarti. Enhanced answer type inference from questions using sequential models. In EMNLP/HLT, pages 315--322, 2005. URL http://www.aclweb.org/anthology/H05--1040.
[16]
S. Kulkarni, A. Singh, G. Ramakrishnan, and S. Chakrabarti. Collective annotation of Wikipedia entities in Web text. In SIGKDD Conference, pages 457--466, 2009. URL http://www.cse.iitb.ac.in/ soumen/doc/CSAW/.
[17]
T. Lacroix, G. Obozinski, and N. Usunier. Tensor decompositions for temporal knowledge base completion. In ICLR, 2020. URL https://openreview.net/forum?id=rke2P1BFwS.
[18]
X. Li, D. Roth, and K. Small. The role of semantic information in learning question classifiers. In International Joint Conference on Natural Language Processing (IJCNLP), 2004. URL http://l2r.cs.uiuc.edu/ danr/Papers/LiRoSm04.pdf.
[19]
X. L. Li, L. Vilnis, D. Zhang, M. Boratko, and A. McCallum. Smoothing the geometry of probabilistic box embeddings. In ICLR, 2019. URL https://openreview.net/forum?id=H1xSNiRcF7.
[20]
J. J. Lin, R. Nogueira, and A. Yates. Pretrained transformers for text ranking: Bert and beyond. WSDM Conference, 2021. URL https://dl.acm.org/doi/pdf/10.1145/3437963.3441667.
[21]
T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, pages 3111--3119, 2013. URL https://goo.gl/x3DTzS.
[22]
A. H. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston. Key-value memory networks for directly reading documents. In EMNLP Conference, 2016. URL https://www.aclweb.org/anthology/D16--1147.pdf.
[23]
G. Miller, R. Beckwith, C. FellBaum, D. Gross, K. Miller, and R. Tengi. Five papers on WordNet. Princeton University, Aug. 1993. URL https://wordnet.princeton.edu/.
[24]
D. Milne and I. H. Witten. Learning to link with Wikipedia. In CIKM, pages 509--518, 2008. URL http://www.cs.waikato.ac.nz/ dnk2/publications/CIKM08-LearningToLinkWithWikipedia.pdf.
[25]
B. Mitra and N. Craswell. An introduction to neural information retrieval. Foundations and Trends in Information Retrieval, 13: 1--126, 2018. URL https://www.nowpublishers.com/article/Details/INR-061.
[26]
M. Nickel and D. Kiela. Poincaré embeddings for learning hierarchical representations. In NIPS, pages 6341--6350, 2017. URL https://arxiv.org/pdf/1705.08039.pdf.
[27]
M. Nickel, L. Rosasco, T. A. Poggio, et al. Holographic embeddings of knowledge graphs. In AAAI Conference, pages 1955--1961, 2016. URL https://arxiv.org/abs/1510.04935.
[28]
J. Pennington, R. Socher, and C. D. Manning. GloVe: Global vectors for word representation. In EMNLP Conference, volume 14, pages 1532--1543, 2014. URL http://www.emnlp2014.org/papers/pdf/EMNLP2014162.pdf.
[29]
S. Pramanik, J. O. Alabi, R. S. Roy, and G. Weikum. UNIQORN: Unified question answering over rdf knowledge graphs and natural language text. ArXiv, abs/2108.08614, 2021. URL https://arxiv.org/pdf/2108.08614.pdf.
[30]
D. Savenkov and E. Agichtein. When a knowledge base is not enough: Question answering over knowledge bases with external text data. In SIGIR Conference, pages 235--244, 2016. URL https://dl.acm.org/citation.cfm?id=2911536.
[31]
U. Sawant and S. Chakrabarti. Learning joint query interpretation and response ranking. In WWW Conference, Brazil, 2013. URL http://arxiv.org/abs/1212.6193.
[32]
U. Sawant, S. Garg, S. Chakrabarti, and G. Ramakrishnan. Neural architecture for question answering using a knowledge graph and Web corpus. Information Retrieval Journal, 22: 324--349, 2018. URL http://arxiv.org/pdf/1706.00973.
[33]
A. Saxena, A. Tripathi, and P. P. Talukdar. Improving multi-hop question answering over knowledge graphs using knowledge base embeddings. In ACL Conference, 2020. URL https://www.aclweb.org/anthology/2020.acl-main.412.pdf.
[34]
A. Saxena, S. Chakrabarti, and P. Talukdar. Question answering over temporal knowledge graphs. ACL Conference, 2021. URL https://arxiv.org/pdf/2106.01515.
[35]
Singh2021AlignKGCH. Singh, S. Chakrabarti, P. Jain, S. R. Choudhury, and Mausam. Multilingual knowledge graph completion with joint relation and entity alignment. In AKBC Conference, volume abs/2104.08804, 2021. URL https://openreview.net/forum?id=FTzU__68rp8.
[36]
S. Subramanian and S. Chakrabarti. New embedded representations and evaluation protocols for inferring transitive relations. In SIGIR Conference, 2018. URL https://gitlab.com/soumen.chakrabarti/rectangle.
[37]
F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO: A core of semantic knowledge unifying WordNet and Wikipedia. In WWW Conference, pages 697--706. ACM Press, 2007. URL http://www2007.org/papers/paper391.pdf.
[38]
Sun, Bedrax-Weiss, and Cohen]Sun2019PullNetH. Sun, T. Bedrax-Weiss, and W. W. Cohen. PullNet: Open domain question answering with iterative retrieval on knowledge bases and text. EMNLP Conference, abs/1904.09537, 2019 a . URL https://www.aclweb.org/anthology/D19--1242.pdf.
[39]
Sun, Deng, Nie, and Tang]Sun2019RotatEZ. Sun, Z. Deng, J.-Y. Nie, and J. Tang. RotatE: Knowledge graph embedding by relational rotation in complex space. ICLR, abs/1902.10197, 2019 b . URL https://arxiv.org/pdf/1902.10197.pdf.
[40]
X. Tang, J. Zhang, B. Chen, and C. Li. BERT-INT: A BERT-based interaction model for knowledge graph alignment. In IJCAI, 2020. URL https://www.ijcai.org/proceedings/2020/0439.pdf.
[41]
ć, Schaffert, Steiner, and Pintscher]Tanon2016FreebaseToWikidataT. P. Tanon, D. Vrandevcić, S. Schaffert, T. Steiner, and L. Pintscher. From Freebase to Wikidata: The great migration. WWW Conference, 2016. URL http://dl.acm.org/ft_gateway.cfm?id=2874809&type=pdf.
[42]
K. Toutanova, D. Chen, P. Pantel, H. Poon, P. Choudhury, and M. Gamon. Representing text for joint embedding of text and knowledge bases. In EMNLP Conference, pages 1499--1509, 2015. URL https://www.aclweb.org/anthology/D/D15/D15--1174.pdf.
[43]
T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard. Complex embeddings for simple link prediction. In ICML, pages 2071--2080, 2016. URL http://arxiv.org/abs/1606.06357.
[44]
I. Vendrov, R. Kiros, S. Fidler, and R. Urtasun. Order-embeddings of images and language. arXiv preprint arXiv:1511.06361, 2015. URL https://arxiv.org/pdf/1511.06361.
[45]
F. Wang, K. Sun, M. Chen, J. Pujara, and P. Szekely. Retrieving complex tables with multi-granular graph representation learning. In SIGIR Conference, pages 1472--1482, 2021. URL https://dl.acm.org/doi/pdf/10.1145/3404835.3462909.
[46]
Y. Wu, X. Liu, Y. Feng, Z. Wang, R. Yan, and D. Zhao. Relation-aware entity alignment for heterogeneous knowledge graphs. IJCAI, 2019. URL https://arxiv.org/pdf/1908.08210.pdf.
[47]
V. Zayats, K. Toutanova, and M. Ostendorf. Representations for question answering from documents with tables and text. In EACL Conference, 2021. URL https://www.aclweb.org/anthology/2021.eacl-main.253.pdf.
[48]
Y. Zhu, H. Liu, Z. Wu, and Y. Du. Relation-aware neighborhood matching model for entity alignment. In AAAI Conference, 2021. URL https://arxiv.org/pdf/2012.08128.pdf.

Cited By

View all
  • (2024)Multi-modal Entity Alignment via Position-enhanced Multi-label PropagationProceedings of the 2024 International Conference on Multimedia Retrieval10.1145/3652583.3658085(366-375)Online publication date: 30-May-2024
  • (2024)MIIGraph: Multi-granularity Information Integration Graph for Document-Level Event ExtractionWeb and Big Data10.1007/978-981-97-7244-5_6(80-94)Online publication date: 28-Aug-2024
  • (2023)MRE: A translational knowledge graph completion model based on multiple relation embeddingMathematical Biosciences and Engineering10.3934/mbe.202325320:3(5881-5900)Online publication date: 2023
  • Show More Cited By

Index Terms

  1. Deep Knowledge Graph Representation Learning for Completion, Alignment, and Question Answering

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGIR '22: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval
    July 2022
    3569 pages
    ISBN:9781450387323
    DOI:10.1145/3477495
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 07 July 2022

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. knowledge graph embeddings
    2. question answering

    Qualifiers

    • Tutorial

    Conference

    SIGIR '22
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 792 of 3,983 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)49
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 28 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Multi-modal Entity Alignment via Position-enhanced Multi-label PropagationProceedings of the 2024 International Conference on Multimedia Retrieval10.1145/3652583.3658085(366-375)Online publication date: 30-May-2024
    • (2024)MIIGraph: Multi-granularity Information Integration Graph for Document-Level Event ExtractionWeb and Big Data10.1007/978-981-97-7244-5_6(80-94)Online publication date: 28-Aug-2024
    • (2023)MRE: A translational knowledge graph completion model based on multiple relation embeddingMathematical Biosciences and Engineering10.3934/mbe.202325320:3(5881-5900)Online publication date: 2023
    • (2023)SelfLRE: Self-refining Representation Learning for Low-resource Relation ExtractionProceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3539618.3592058(2364-2368)Online publication date: 19-Jul-2023
    • (2022)Fine-grained relational learning for few-shot knowledge graph completionACM SIGAPP Applied Computing Review10.1145/3570733.357073522:3(25-38)Online publication date: 3-Nov-2022
    • (2022)Knowledge-based Problem Solving and Reasoning methods2022 14th International Conference on Knowledge and Systems Engineering (KSE)10.1109/KSE56063.2022.9953617(1-7)Online publication date: 19-Oct-2022

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media