skip to main content
survey

Service Computing for Industry 4.0: State of the Art, Challenges, and Research Opportunities

Published:08 October 2021Publication History
Skip Abstract Section

Abstract

Recent advances in the large-scale adoption of information and communication technologies in manufacturing processes, known as Industry 4.0 or Smart Manufacturing, provide us a window into how the manufacturing sector will evolve in the coming decades. As a result of these initiatives, manufacturing firms have started to integrate a series of emerging technologies into their processes that will change the way products are designed, manufactured, and consumed. This article provides a comprehensive review of how service-oriented computing is being employed to develop the required software infrastructure for Industry 4.0 and identifies the major challenges and research opportunities that ensue. Particular attention is paid to the microservices architecture, which is increasingly recognized as offering a promising approach for developing innovative industrial applications. This literature review is based on the current state of the art on service computing for Industry 4.0 as described in a large corpus of recently published research papers, which helped us to identify and explore a series of challenges and opportunities for the development of this emerging technology frontier, with the goal of facilitating its widespread adoption.

References

  1. M. Aazam, S. Zeadally, and K. A. Harras. 2018. Deploying fog computing in industrial Internet of Things and industry 4.0. IEEE Trans. Industr. Inf. 14, 10 (2018), 4674–4682.Google ScholarGoogle ScholarCross RefCross Ref
  2. B. M. Agostinho, C. B. de Souza, F. O. Gomes, A. S. R. Pinto, and M. A. R. Dantas. 2020. Omniconn: An architecture for heterogeneous devices interoperability on industrial Internet of Things. In Lecture Notes in Networks and Systems. Vol. 96. 329–339.Google ScholarGoogle Scholar
  3. E. Al-Masri. 2018. Enhancing the microservices architecture for the Internet of Things. In Proceedings of the 2018 IEEE International Conference on Big Data. 5119–5125.Google ScholarGoogle ScholarCross RefCross Ref
  4. A. B. A. Alaasam, G. Radchenko, and A. Tchernykh. 2019. Stateful stream processing for digital twins: Microservice-based kafka stream DSL. In Proceedings of the International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON’19). 804–809.Google ScholarGoogle Scholar
  5. K. Alexopoulos, K. Sipsas, E. Xanthakis, S. Makris, and D. Mourtzis. 2018. An industrial Internet of things based platform for context-aware information services in manufacturing. Intl. J. Comput. Integr. Manufact. 31, 11 (2018), 1111–1123.Google ScholarGoogle ScholarCross RefCross Ref
  6. A. Angelopoulos, E. T. Michailidis, N. Nomikos, P. Trakadas, A. Hatziefremidis, S. Voliotis, and T. Zahariadis. 2020. Tackling faults in the industry 4.0 era—A survey of machine-learning solutions and key aspects. Sensors 20, 1 (2020), 109.Google ScholarGoogle ScholarCross RefCross Ref
  7. P. O. Antonino, F. Schnicke, Z. Zhang, and T. Kuhn. 2019. Blueprints for architecture drivers and architecture solutions for Industry 4.0 shopfloor applications. In Proceedings of the 13th European Conference on Software Architecture (ECSA’19). 261–268.Google ScholarGoogle Scholar
  8. U. D. Atmojo, J. O. Blech, S. Sierla, and V. Vyatkin. 2019. Service-based architecture with product-centric control in a production island-based agile factory. In Proceedings of the IEEE International Conference on Industrial Internet (ICII’19). 305–306.Google ScholarGoogle Scholar
  9. R. Badarinath and V.V. Prabhu. 2017. Advances in internet of things (IoT) in manufacturing. IFIP Adv. Inf. Commun. Technol. 513 (2017), 111–118.Google ScholarGoogle ScholarCross RefCross Ref
  10. S. Bader, E. Barnstedt, H. Bedenbender, M. Billman, B. Boss, and A. Braunmandl. 2020. Details of the Asset Administration Shell. Retrieved from https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.pdf.Google ScholarGoogle Scholar
  11. A. Bagozi and D. Bianchini. 2019. IDEAaS: Interactive data exploration as-a service. In Proceedings of the 2019 IEEE World Congress on Services. 345–348.Google ScholarGoogle Scholar
  12. A. Bagozi, D. Bianchini, V. D. Antonellis, A. Marini, and D. Ragazzi. 2017. Interactive data exploration as a service for the smart factory. In Proceedings of the 2017 IEEE 24th International Conference on Web Services (ICWS’17). 293–300.Google ScholarGoogle Scholar
  13. H. Baumgartel and R. Verbeet. 2020. Service and agent based system architectures for industrie 4.0 systems. In Proceedings of the IEEE/IFIP Network Operations and Management Symposium (NOMS’20).Google ScholarGoogle Scholar
  14. T. Berners-Lee, J. Hendler, and O. Lassila. 2001. The semantic web: A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities. Sci. Am. 284, 5 (2001), 34–43.Google ScholarGoogle Scholar
  15. J. A. Bigheti, M. M. Fernandes, and E. P. Godoy. 2019. Control as a service: A microservice approach to industry 4.0. In Proceedings of the IEEE International Workshop on Metrology for Industry 4.0 and IoT (MetroInd 4.0 and IoT’19). 438–443.Google ScholarGoogle Scholar
  16. H. P. Breivold. 2017. Internet-of-things and cloud computing for smart industry: A systematic mapping study. In Proceedings of the 5th International Conference on Enterprise Systems. 299–304.Google ScholarGoogle ScholarCross RefCross Ref
  17. J. Buenabad-Chávez, G. Kecskemeti, V. Tountopoulos, E. Kavakli, and R. Sakellariou. 2018. Towards a methodology for RAMI4.0 service design. In Proceedings of the 6th International Conference on Enterprise Systems (ES’18). 188–195.Google ScholarGoogle Scholar
  18. F. Burzlaff and C. Bartelt. 2018. I4.0-device integration: A qualitative analysis of methods and technologies utilized by system integrators: Implications for enginering future industrial Internet of Things system. In Proceedings of the IEEE 15th International Conference on Software Architecture Companion, (ICSA-C’18). 27–34.Google ScholarGoogle Scholar
  19. A. Buzachis, A. Galletta, A. Celesti, L. Carnevale, and M. Villari. 2019. Towards osmotic computing: A blue-green strategy for the fast re-deployment of microservices. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC’19).Google ScholarGoogle Scholar
  20. R. L. Cagnin, I. R. Guilherme, J. Queiroz, B. Paulo, and M. F. O. Neto. 2018. A multi-agent system approach for management of industrial iot devices in manufacturing processes. In Proceedings of the IEEE 16th International Conference on Industrial Informatics (INDIN’18). 31–36.Google ScholarGoogle ScholarCross RefCross Ref
  21. M. Ciavotta, M. Alge, S. Menato, D. Rovere, and P. Pedrazzoli. 2017. A microservice-based middleware for the digital factory. Proc. Manufact. 11(Jun.2017), 931–938.Google ScholarGoogle Scholar
  22. K. Dang and I. Trotskii. 2019. Architecture for automation system metrics collection, visualization and data engineering—HAMK sheet metal center building automation case study. Open Eng. 9, 1 (2019), 561–570.Google ScholarGoogle ScholarCross RefCross Ref
  23. A. V. Dastjerdi and R. Buyya. 2016. Fog computing: Helping the Internet of Things realize its potential. Computer 49, 8 (2016), 112–116.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. L. B. R. de Oliveira, K. Romero Felizardo, D. Feitosa, and E. Y. Nakagawa. 2010. Reference models and reference architectures based on service-oriented architecture: A systematic review. In Software Architecture. 360–367.Google ScholarGoogle Scholar
  25. H. Derhamy, J. Eliasson, and J. Delsing. 2017. IoT interoperability - on-demand and low latency transparent multiprotocol translator. IEEE IoT J. 4, 5 (2017), 1754–1763.Google ScholarGoogle Scholar
  26. H. Derhamy, J. Eliasson, and J. Delsing. 2019. System of system composition based on decentralized service-oriented architecture. IEEE Syst. J. 13, 4 (2019), 3675–3686.Google ScholarGoogle ScholarCross RefCross Ref
  27. H. Derhamy, J. Ronnholm, J. Delsing, J. Eliasson, and J. Van Deventer. 2017. Protocol interoperability of OPC UA in service oriented architectures. In Proceedings of the IEEE 15th International Conference on Industrial Informatics (INDIN’17). 44–50.Google ScholarGoogle Scholar
  28. P. Di Francesco, I. Malavolta, and P. Lago. 2017. Research on architecting microservices: Trends, focus, and potential for industrial adoption. In IEEE International Conference on Software Architecture (ICSA’17). 21–30.Google ScholarGoogle Scholar
  29. G. di Orio, P. Malo, and J. Barata. 2019. NOVAAS: A reference implementation of industrie4.0 asset administration shell with best-of-breed practices from IT engineering. In Proceedings of the 45th Annual Conference of the IEEE Industrial Electronics Society (IECON’19). 5505–5512.Google ScholarGoogle Scholar
  30. J. Dobaj, M. Krisper, J. Iber, and C. Kreiner. 2018. A microservice architecture for the industrial internet-of-things. In Proceedings of the 23rd European Conference on Pattern Languages of Programs (EuroPLoP’18). 1–15.Google ScholarGoogle Scholar
  31. J. Dobaj, M. Krisper, and G. Macher. 2019. Towards cyber-physical infrastructure as-a-service (CPIaaS) in the era of industry 4.0. In Proceedings of the European Conference on Software Process Improvement. 310–321.Google ScholarGoogle Scholar
  32. S. Dobrescu, O. Chenaru, N. Matei, L. Ichim, and D. Popescu. 2016. A service oriented system of reusable algorithms for distributed control of petroleum facilities in onshore oilfields. In Proceedings of the 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI’16). 1–6.Google ScholarGoogle Scholar
  33. J. Eliasson, J. Delsing, H. Derhamy, Z. Salcic, and K. Wang. 2015. Towards industrial Internet of Things: An efficient and interoperable communication framework. In Proceedings of the IEEE International Conference on Industrial Technology. 2198–2204.Google ScholarGoogle Scholar
  34. M. Engelsberger and T. Greiner. 2018. Dynamic reconfiguration of service-oriented resources in cyber–physical production systems by a process-independent approach with multiple criteria and multiple resource management operations. Fut. Gen. Comput. Syst. 88 (2018), 424–441.Google ScholarGoogle ScholarCross RefCross Ref
  35. S. M. Fallah. 2015. Multi agent based control architectures. In Proceedings of the 26th DAAAM International Symposium on Intelligent Manifacturing and Automation. 1166–1170.Google ScholarGoogle Scholar
  36. F. Ferreira, J. Faria, A. Azevedo, and A. L. Marques. 2016. Product lifecycle management enabled by industry 4.0 technology. Adv. Transdiscipl. Eng. 3 (2016), 349–354.Google ScholarGoogle Scholar
  37. B. R. Ferrer and J. L. M. Lastra. 2017. An architecture for implementing private local automation clouds built by CPS. In Proceedings of the 43rd Annual Conference of the IEEE Industrial Electronics Society (IECON’17), 5406–5413.Google ScholarGoogle ScholarCross RefCross Ref
  38. R. T. Fielding. 2000. REST: Architectural Styles and the Design of Network-based Software Architectures. Ph.D. Dissertation. University of California, Irvine.Google ScholarGoogle Scholar
  39. S. Figueroa-Lorenzo, J. Añorga, and S. Arrizabalaga. 2020. A survey of IIoT protocols: A measure of vulnerability risk analysis based on CVSS. ACM Comput. Surv. 53, 2, Article 44 (Apr. 2020), 53 pages.Google ScholarGoogle Scholar
  40. J. C. Garcia-Ortiz, D. Todoli-Ferrandis, J. Vera-Perez, S. Santonja-Climent, and V. Sempere-Paya. 2019. Design of a micro-service based Data Pool for device integration to speed up digitalization. In Proceedings of the 27th Telecommunications Forum (TELFOR’19).Google ScholarGoogle Scholar
  41. R. Geissbauer, J. Vedso, and S. Schrauf. 2016. Industry 4.0: Building the Digital Enterprise. Retrieved from https://www.pwc.com/gx/en/industries/industries-4.0/landing-page/industry-4.0-building-your-digital-enterprise-april-2016.pdf.Google ScholarGoogle Scholar
  42. A. Gilchrist. 2016. Industry 4.0: the Industrial Internet of Things. Apress, New York.Google ScholarGoogle Scholar
  43. T. Glock, V. Pazmino Betancourt, M. Kern, B. Liu, T. Reib, E. Sax, and J. Becker. 2019. Service-based industry 4.0 middleware for partly automated collaborative work of cranes. In Proceedings of the of 8th International Conference on Industrial Technology and Management, ICITM 2019. 229–235.Google ScholarGoogle Scholar
  44. I. Grangel-Gonzalez. 2018. A Knowledge Graph Based Integration Approach for Industry 4.0. Ph.D. Dissertation. University of Bonn.Google ScholarGoogle Scholar
  45. I. Grangel-Gonzalez, P. Baptista, L. Halilaj, S. Lohmann, M. E. Vidal, C. Mader, and S. Auer. 2017. The industry 4.0 standards landscape from a semantic integration perspective. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation (ETFA’17). 1–8.Google ScholarGoogle Scholar
  46. M. Grieves. 2014. Digital Twin: Manufacturing Excellence through Virtual Factory Replication. Retrieved from https://www.researchgate.net/publication/275211047_Digital_Twin_Manufacturing_Excellence_through_Virtual_Factory_Replication. White Paper.Google ScholarGoogle Scholar
  47. M. Grieves and J. Vickers. 2016. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches, F. J. Kahlen, S. Flumerfelt, and A. Alves (Eds.). 1–327.Google ScholarGoogle Scholar
  48. C. Gröger, L. Kassner, E. Hoos, J. Königsberger, C. Kiefer, S. Silcher, and B. Mitschang. 2016. The data-driven factory: Leveraging big industrial data for agile, learning and human-centric manufacturing. In Proceedings of the of the 18th International Conference on Enterprise Information Systems. 40–52.Google ScholarGoogle Scholar
  49. S. Grüner, J. Pfrommer, and F. Palm. 2016. RESTful industrial comunication with OPC UA. IEEE Trans. Industr. Inf. 12, 5 (2016), 1832–1841.Google ScholarGoogle ScholarCross RefCross Ref
  50. V. Hugud and S. K. Arunachalam. 2020. Digital twin: Empowering edge devices to be intelligent. In The Digital Twin Paradigm for Smarter Systems and Environments: The Industry Use Cases. 107–126.Google ScholarGoogle Scholar
  51. S. Iarovyi, J. L. M. Lastra, R. Haber, and R. Del Toro. 2015. From artificial cognitive systems and open architectures to cognitive manufacturing systems. In Proceedings of the IEEE International Conference on Industrial Informatics (INDIN’15). 1225–1232.Google ScholarGoogle Scholar
  52. J. Innerbichler, S. Gonul, V. Damjanovic-Behrendt, B. Mandler, and F. Strohmeier. 2017. NIMBLE collaborative platform: Microservice architectural approach to federated IoT. In Proceedings of the Global Internet of Things Summit (GIoTS’17).Google ScholarGoogle Scholar
  53. H. Ishiguro, F. Yamaoka, T. Kanda, B. Mutlu, and N. Hagita. 2017. The Industrial Internet of Things Volume G1: Reference Architecture. Retrieved from https://www.iiconsortium.org/IIC_PUB_G1_V1.80_2017-01-31.pdf.Google ScholarGoogle Scholar
  54. A. Ismail and W. Kastner. 2016. A middleware architecture for vertical integration. In Proceedings of the 1st International Workshop on Cyber-Physical Production Systems (CPPS’16). 1–4.Google ScholarGoogle Scholar
  55. A. Ismail and W. Kastner. 2016. Discovery in SOA-governed industrial middleware with mDNS and DNS-SD. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation (ETFA’16).Google ScholarGoogle Scholar
  56. P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov. 2018. Microservices: The journey so far and challenges ahead. IEEE Softw. 35, 3 (2018), 24–35. DOI: https://doi.org/10.1109/MS.2018.2141039Google ScholarGoogle ScholarCross RefCross Ref
  57. V. Jirkovský, M. Obitko, and V. Mařík. 2017. Understanding data heterogeneity in the context of cyber-physical systems integration. IEEE Trans. Industr. Inf. 13, 2 (2017), 660–667.Google ScholarGoogle ScholarCross RefCross Ref
  58. K. Kayabay, M. O. Gokalp, P. E. Eren, and A. Kocyigit. 2019. A workflow and cloud based service-oriented architecture for distributed manufacturing in industry 4.0 context. In Proceedings of the IEEE 11th International Conference on Service-Oriented Computing and Applications (SOCA’18). 88–92.Google ScholarGoogle Scholar
  59. E. Kharlamov, D. Hovland, M. G. Skjæveland, D. Bilidas, E. Jiménez-Ruiz, G. Xiao, A. Soylu, D. Lanti, M. Rezk, D. Zheleznyakov, M. Giese, H. Lie, Y. Ioannidis, Y. Kotidis, M. Koubarakis, and A. Waaler. 2017. Ontology based data access in statoil. J. Web Semant. 44 (2017), 3–36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. M. S. Knudsen, J. Kaivo-Oja, and T. Lauraeus. 2019. Enabling technologies of industry 4.0 and their global forerunners: An empirical study of the web of science database. In Communications in Computer and Information Science. Vol. 1027. 3–13.Google ScholarGoogle Scholar
  61. J. Kolb, M. AbdelBaky, R. H. Katz, and D. E. Culler. 2020. Core concepts, challenges, and future directions in blockchain: A centralized tutorial. ACM Comput. Surv. 53, 1, Article 9 (Feb. 2020), 39 pages.Google ScholarGoogle Scholar
  62. P. Kolyvakis, M.-J. Yoo, and D. Kiritsis. 2017. Knowledge as a service in the IoT era. In Proceedings of the 1st International Conference on Internet of Things and Machine Learning (IML’17). 1–6.Google ScholarGoogle Scholar
  63. T. Kuhn, S. Sadikow, and P. Antonino. 2019. A service-based production ecosystem architecture for industrie 4.0. Kunstl. Intell. 33, 2 (2019), 163–169.Google ScholarGoogle ScholarCross RefCross Ref
  64. B. (Serm) Kulvatunyou, H. Oh, N. Ivezic, and S. T. Nieman. 2019. Standards-based semantic integration of manufacturing information: Past, present, and future. J. Manufact. Syst. 52, (Jul.2019), 184–197.Google ScholarGoogle ScholarCross RefCross Ref
  65. P. Lalanda, D. Morand, and P.C. Mora. 2019. Data management in an industrial service-oriented platform. In Proceedings of the IEEE International Conference on Industrial Cyber Physical Systems (ICPS’19). 81–87.Google ScholarGoogle Scholar
  66. A. N. Lam and O. Haugen. 2019. Implementing OPC-UA services for industrial cyber-physical systems in service-oriented architecture. In Proceedings of the 45th Annual Conference of the IEEE Industrial Electronics Society (IECON’19). 5486–5492.Google ScholarGoogle Scholar
  67. F. Lemoine, T. Aubonnet, and N. Simoni. 2020. Self-assemble-featured Internet of Things. Fut. Gener. Comput. Syst. 112 (2020), 41–57.Google ScholarGoogle ScholarCross RefCross Ref
  68. J. Lewis and M. Fowler. 2014. Microservices: A definition of this new architectural term. Retrieved from http://martinfowler.com/articles/microservices.html.Google ScholarGoogle Scholar
  69. F. Li and L. Gelbke. 2018. Microservice architecture in industrial sofware delivery on edge devices. In Proceedings of the 19th International Conference on Agile Software Development: Companion (XP’18). 1–4.Google ScholarGoogle Scholar
  70. B. Liu, T. Glock, V. P. Betancourt, M. Kern, E. Sax, and J. Becker. 2020. Model driven development process for a service-oriented industry 4.0 system. In Proceedings of the 9th International Conference on Industrial Technology and Management (ICITM’20). 78–83.Google ScholarGoogle Scholar
  71. J. D. Llamuca, C. A. Garcia, J. E. Naranjo, C. Rosero, E. Alvarez-M, and M. V. Garcia. 2020. Integrating ISA-95 and IEC-61499 for distributed control system monitoring. In Advances in Intelligent Systems and Computing. Vol. 1099. 66–80.Google ScholarGoogle Scholar
  72. J. Ma, Q. Wang, and Z. Zhao. 2017. SLAE–CPS: Smart lean automation engine enabled by cyber-physical systems technologies. Sensors (Switz.) 17, 7 (2017), 1–22.Google ScholarGoogle Scholar
  73. S. Malakuti, J. Schmitt, M. Platenius-Mohr, S. Grüner, R. Gitzel, and P. Bihani. 2019. A four-layer architecture pattern for constructing and managing digital twins. In Proceedings of the 13th European Conference on Software Architecture (ECSA’19), Vol. 11681. 231–246.Google ScholarGoogle Scholar
  74. D. W. McKee, S. J. Clement, J. Almutairi, and J. Xu. 2017. Massive-scale automation in cyber-physical systems: Vision & challenges. In Proceedings of the IEEE 13th International Symposium on Autonomous Decentralized Systems (ISADS’17). 5–11.Google ScholarGoogle Scholar
  75. A. Mehdi, E. Kharlamov, D. Stepanova, F. Lösch, and I. Grangel-González. 2019. Towards semantic integration of Bosch manufacturing data. In Proceedings of the ISWC 2019 Satellite Tracks, Vol. 2456. 303–304.Google ScholarGoogle Scholar
  76. M. Mena, J. Criado, L. Iribarne, and A. Corral. 2019. Digital dices: Towards the integration of cyber-physical systems merging the web of things and microservices. In Proceedings of the International Conference on Model & Data Engineering (MEDI’19), Lecture Notes in Computer Science, Vol. 11815. 195–205.Google ScholarGoogle Scholar
  77. M. Moghaddam, C. R. Kenley, J. M. Colby, M. N. C. Berns, R. Rausch, J. M. W. M. Skeffington, J. Garrity, A. R. Chaturvedi, and A. V. Deshmukh. 2017. Next-generation enterprise architectures. In Proceedings of the IEEE 15th International Conference on Industrial Informatics (INDIN’17). 32–37.Google ScholarGoogle Scholar
  78. N. Mohamed, J. Al-Jaroodi, and S. Lazarova-Molnar. 2019. Leveraging the capabilities of industry 4.0 for improving energy efficiency in smart factories. IEEE Access 7 (2019), 18008–18020.Google ScholarGoogle ScholarCross RefCross Ref
  79. D. Monteiro, R. Gadelha, P. H. M. Maia, L. S. Rocha, and N. C. Mendonça. 2018. Beethoven: An event-driven lightweight platform for microservice orchestration. In Software Architecture, C. E. Cuesta, D. Garlan, and J. Pérez (Eds.). Springer International Publishing, 191–199.Google ScholarGoogle Scholar
  80. M. Muller, E. Wings, and L. Bergmann. 2017. Developing open source cyber-physical systems for service-oriented architectures using OPC UA. In Proceedings of the 2017 IEEE 15th International Conference on Industrial Informatics (INDIN’17). 83–88.Google ScholarGoogle Scholar
  81. M. J. Neuer, F. Marchiori, A. Ebel, N. Matskanis, L. Piedimonti, A. Wolff, and G. Mathis. 2016. Dynamic reallocation and rescheduling of steel products using agents with strategical anticipation and virtual marketstructures. In Proceedings of the 17th IFAC Symposium on Control, Optimization and Automation in Mining, Mineral and Metal Processing (MMM’16), Vol. 49. 232–237.Google ScholarGoogle Scholar
  82. S. Newman. 2015. Building Microservices: Designing Fine-Grained Systems (1st ed.). O’Reilly Media.Google ScholarGoogle Scholar
  83. N. Niknejad, W. Ismail, I. Ghani, B. Nazari, M. Bahari, and A. R. B. C. Hussin. 2020. Understanding service-oriented architecture (SOA): A systematic literature review and directions for further investigation. Inf. Syst. 91 (2020), 101–491.Google ScholarGoogle ScholarCross RefCross Ref
  84. R. Oberhauser and S. Stigler. 2018. Microflows: Leveraging process mining and an automated constraint recommender for microflow modeling. In Business Modeling and Software Design, B. Shishkov (Ed.). Springer International Publishing, 25–48.Google ScholarGoogle Scholar
  85. P. O’Donovan, C. Gallagher, K. Leahy, and D. T. J. O’Sullivan. 2019. A comparison of fog and cloud computing cyber-physical interfaces for Industry 4.0 real-time embedded machine learning engineering applications. Comput. Industr. 110 (2019), 12–35.Google ScholarGoogle ScholarCross RefCross Ref
  86. E. Oyekanlu. 2018. Distributed osmotic computing approach to implementation of explainable predictive deep learning at industrial iot network edges with real-time adaptive wavelet graphs. In Proceedings of the 2018 IEEE 1st International Conference on Artificial Intelligence and Knowledge Engineering (AIKE’18). 179–188.Google ScholarGoogle ScholarCross RefCross Ref
  87. E. Oyekanlu. 2018. Osmotic collaborative computing for machine learning and cybersecurity applications in industrial iot networks and cyber physical systems with Gaussian mixture models. In Proceedings of the 4th IEEE International Conference on Collaboration and Internet Computing (CIC’18). 326–335.Google ScholarGoogle ScholarCross RefCross Ref
  88. P. Pahlevannejad, A. Herget, R. Moreno, A. Hennecke, and M. Ruskowski. 2019. Implementation and testing of a modular system architecture for generic hybrid production cells in an industrial environment. In Proceedings of the 45th Annual Conference of the IEEE Industrial Electronics Society (IECON’19).Google ScholarGoogle Scholar
  89. C. Paniagua, J. Eliasson, and J. Delsing. 2019. Interoperability mismatch challenges in heterogeneous SOA-based systems. In Proceedings of the IEEE International Conference on Industrial Technology, Vol. 2019, 788–793.Google ScholarGoogle Scholar
  90. M. P. Papazoglou and A. S. Andreou. 2019. Smart connected digital factories: Unleashing the power of industry 4.0. In Proceedings of the International Conference on Cloud Computing and Services Science (CLOSER’18).Communications in Computer and Information Science, Vol. 1073. 77–101.Google ScholarGoogle Scholar
  91. M. P. Papazoglou and W.-J. van den Heuvel. 2007. Service oriented architectures: Approaches, technologies and research issues. VLDB J. 16, 3 (2007), 389–415.Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. H. S. Park and R. A. Febriani. 2019. Modelling a platform for smart manufacturing system. Proc. Manufact. 38, 2019 (2019), 1660–1667.Google ScholarGoogle ScholarCross RefCross Ref
  93. K. T. Park, S. J. Im, Y.-S. Kang, S. D. Noh, Y. T. Kang, and S. G. Yang. 2019. Service-oriented platform for smart operation of dyeing and finishing industry. Int. J. Comput. Integr. Manufact. 32, 3 (2019), 307–326.Google ScholarGoogle ScholarCross RefCross Ref
  94. K. T. Park, D. Lee, and S. D. Noh. 2020. Operation procedures of a work-center-level digital twin for sustainable and smart manufacturing. Int. J. Precis. Eng. Manufact. Green Technol. 7, 3 (2020), 791–814.Google ScholarGoogle ScholarCross RefCross Ref
  95. K. T. Park, J. Yang, and S. D. Noh. 2021. VREDI: Virtual representation for a digital twin application in a work-center-level asset administration shell. J. Intell. Manufact. 32 (2021), 501–544.Google ScholarGoogle ScholarCross RefCross Ref
  96. G. Pedone and I. Mezgár. 2018. Model similarity evidence and interoperability affinity in cloud-ready Industry 4.0 technologies. Comput. Industr. 100, (Feb.2018), 278–286.Google ScholarGoogle Scholar
  97. R. P. Pontarolli, J. A. Bigheti, M. M. Fernandes, F. O. Domingues, S. L. Risso, and E. P. Godoy. 2020. Microservice orchestration for process control in industry 4.0. In Proceedings of the IEEE International Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT’20). 245–249.Google ScholarGoogle Scholar
  98. G. Radchenko, A. Alaasam, and A. Tchernykh. 2019. Micro-workflows: Kafka and kepler fusion to support digital twins of industrial processes. In Proceedings of the 11th IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion’18). 83–88.Google ScholarGoogle Scholar
  99. J. Z. Reis and R. F. Gonçalves. 2018. The role of internet of services (IoS) on industry 4.0 through the service oriented architecture (SOA). In IFIP Advances in Information and Communication Technology. Vol. 536. 20–26.Google ScholarGoogle Scholar
  100. J. Rufino, M. Alam, J. Ferreira, A. Rehman, and K. F. Tsang. 2017. Orchestration of containerized microservices for IIoT using Docker. In Proceedings of the IEEE International Conference on Industrial Technology. 1532–1536.Google ScholarGoogle Scholar
  101. L. Rychener, F. Montet, and J. Hennebert. 2020. Architecture proposal for machine learning based industrial process monitoring. Proc. Comput. Sci. 170, 2019 (2020), 648–655.Google ScholarGoogle ScholarCross RefCross Ref
  102. T. Sakakura. 2015. A speculation on a framework that provides highly organized services for manufacturing. In Proceedings of the IEEE International Conference on Automation Science and Engineering. 1025–1028.Google ScholarGoogle ScholarCross RefCross Ref
  103. C. Salkin, M. Oner, A. Ustundag, and E. Cevikcan. 2018. A conceptual framework for industry 4.0. In Industry 4.0: Managing The Digital Transformation, A. Ustundag and E. Cevikcan (Eds.). Springer International, 3–23.Google ScholarGoogle Scholar
  104. N. Santos, H. Rodrigues, J. Pereira, F. Morais, R. Abreu, N. Fernandes, D. Martins, and R. J. Machado. 2018. UH4SP - A software platform for integrated management of connected smart plants. In Proceedings of the International Conference on Intelligent Systems (IS’18). 541–548.Google ScholarGoogle Scholar
  105. M. Saqlain, M. Piao, Y. Shim, and J. Y. Lee. 2019. Framework of an IoT-based industrial data management for smart manufacturing. J. Sens. Actuator Netw. 8, 25 (2019), 1–21.Google ScholarGoogle ScholarCross RefCross Ref
  106. M. Satyanarayanan. 2017. The emergence of edge computing. Computer 50, 1 (2017), 30–39.Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. D. Schel, C. Henkel, D. Stock, O. Meyer, G. Rauhöft, P. Einberger, M. Stöhr, M. A. Daxer, and J. Seidelmann. 2018. Manufacturing service bus: An implementation. Proc. CIRP 67 (2018), 179–184.Google ScholarGoogle ScholarCross RefCross Ref
  108. K. Schweichhart. 2019. RAMI 4.0 Reference Architectural Model for Industrie 4.0. Retrieved from https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf.Google ScholarGoogle Scholar
  109. W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. 2016. Edge computing: Vision and challenges. IEEE IoT J. 3, 5 (2016), 637–646.Google ScholarGoogle Scholar
  110. H. R. Siller, D. Romero, R. J. Rabelo, and E. Vazquez. 2018. Advanced CPS service oriented architecture for smart injection molding and mods 4.0. In Proceedings of the International Conference on Intelligent Systems, Vol. 4. 428–434.Google ScholarGoogle Scholar
  111. F. Simetinger and Z. J. Zhang. 2020. Deriving secondary traits of industry 4.0: A comparative analysis of significant maturity models. Syst. Res. Behav. Sci. (2020), 1–16.Google ScholarGoogle Scholar
  112. K. Sipsas, K. Alexopoulos, V. Xanthakis, and G. Chryssolouris. 2016. Collaborative maintenance in flow-line manufacturing environments: An industry 4.0 approach. In Proceedings of the 5th CIRP Global Web Conference Research and Innovation for Future Production. 236–241.Google ScholarGoogle Scholar
  113. J. Stark. 2015. Product Lifecycle Management (Volume 1): 21st Century Paradigm for Product Realisation. Springer International.Google ScholarGoogle Scholar
  114. M. M. Strljic, T. Korb, T. Tasci, E. F. Tinsel, D. Pawlowicz, O. Riedel, and A. Lechler. 2018. A platform-independent communication framework for the simplified development of shop-floor applications as microservice components. In Proceedings of the IEEE International Conference on Advanced Manufacturing (ICAM’18). 250–253.Google ScholarGoogle Scholar
  115. H. Tang, D. Li, J. Wan, M. Imran, and M. Shoaib. 2020. A reconfigurable method for intelligent manufacturing based on industrial cloud and edge intelligence. IEEE IoT J. 7, 5 (2020), 4248–4259.Google ScholarGoogle Scholar
  116. F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, and F. Sui. 2018. Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manufact. Technol. 94, 9–12 (2018), 3563–3576.Google ScholarGoogle ScholarCross RefCross Ref
  117. F. Tao, H. Zhang, A. Liu, and A. Y.C. Nee. 2019. Digital twin in industry: State-of-the-art. IEEE Trans. Industr. Inf. 15, 4 (2019), 2405–2415.Google ScholarGoogle ScholarCross RefCross Ref
  118. A. Theorin, K. Bengtsson, J. Provost, M. Lieder, C. Johnsson, T. Lundholm, and B. Lennartson. 2017. An event-driven manufacturing information system architecture for Industry 4.0. Int. J. Prod. Res. 55, 5 (2017), 1297–1311.Google ScholarGoogle ScholarCross RefCross Ref
  119. K. Thramboulidis, D. C. Vachtsevanou, and I. Kontou. 2019. CPuS-IoT: A cyber-physical microservice and IoT-based framework for manufacturing assembly systems. Annu. Rev. Contr. 47 (2019), 237–248.Google ScholarGoogle ScholarCross RefCross Ref
  120. V. M. Tovarnitchi. 2019. Designing distributed, scalable and extensible system using reactive architectures. In Proceedings of the 22nd International Conference on Control Systems and Computer Science (CSCS’19). 484–488.Google ScholarGoogle ScholarCross RefCross Ref
  121. S. Trabesinger, R. Pichler, D. Schall, and R. Gfrerer. 2019. Connectivity as a prior challenge in establishing CPPS on basis of heterogeneous IT-software environments. Proc. Manufact. 31 (2019), 370–376.Google ScholarGoogle ScholarCross RefCross Ref
  122. H.-L. Truong. 2018. Integrated analytics for IIoT predictive maintenance using IoT big data cloud systems. In Proceedings of the 2018 IEEE International Conference on Industrial Internet (ICII18). 109–118.Google ScholarGoogle ScholarCross RefCross Ref
  123. T. Usländer and U. Epple. 2015. Reference model of Industrie 4.0 service architectures: Basic concepts and approach. Automatisierungstechnik 63, 10 (2015), 858–866.Google ScholarGoogle ScholarCross RefCross Ref
  124. M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan. 2016. Osmotic computing: A new paradigm for edge/cloud integration. IEEE Cloud Comput. 3, 6 (2016), 76–83.Google ScholarGoogle ScholarCross RefCross Ref
  125. T. Vresk and I. Cavrak. 2016. Architecture of an interoperable IoT platform based on microservices. In Proceedings of the 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO’16). 1196–1201.Google ScholarGoogle Scholar
  126. W. Wang, L. Fan, P. Huang, and H. Li. 2019. A new data processing architecture for multi-scenario applications in aviation manufacturing. IEEE Access 7 (2019), 83637–83650.Google ScholarGoogle ScholarCross RefCross Ref
  127. M. Wooldridge. 2009. An Introduction to Multiagent Systems (2nd ed.). Wiley.Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. M. Wu, X. Ding, and R. Hou. 2019. Design and implementation of B2B E-commerce platform based on microservices architecture. In Proceedings of the 2nd International Conference on Computer Science and Software Engineering (CSSE’19). 30–34.Google ScholarGoogle Scholar
  129. L. D. Xu, E. L. Xu, and L. Li. 2018. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 56, 8 (2018), 2941–2962.Google ScholarGoogle ScholarCross RefCross Ref
  130. L. Yang, W. Li, Y. Luo, Y. Duan, and G. Fortino. 2017. A social-D2D architecture for people-centric industrial Internet of Things. In Proceedings of the IEEE 14th International Conference on Networking, Sensing and Control (ICNSC’17). 744–749.Google ScholarGoogle Scholar
  131. L. Yue and X. Li. 2018. A smart manufacturing compliance architecture of electronic batch recording system (eBRS) for life sciences industry. In Proceedings of the 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE’18). 206–212.Google ScholarGoogle Scholar
  132. H. Zheng, Y. Feng, Y. Gao, and J. Tan. 2018. A robust predicted performance analysis approach for data-driven product development in the industrial internet of things. Sensors (Switz.) 18 (2018), 1–16.Google ScholarGoogle Scholar
  133. T. Zhu, S. Dhelim, Z. Zhou, S. Yang, and H. Ning. 2017. An architecture for aggregating information from distributed data nodes for industrial internet of things. Comput. Electr. Eng. 58 (2017), 337–349.Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. O. Zimmermann. 2017. Microservices tenets: Agile approach to service development and deployment. Comput. Sci. Res. Dev. 32, 3–4 (Jul. 2017), 301–310.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Service Computing for Industry 4.0: State of the Art, Challenges, and Research Opportunities

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Computing Surveys
            ACM Computing Surveys  Volume 54, Issue 9
            December 2022
            800 pages
            ISSN:0360-0300
            EISSN:1557-7341
            DOI:10.1145/3485140
            Issue’s Table of Contents

            Copyright © 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 8 October 2021
            • Accepted: 1 July 2021
            • Revised: 1 May 2021
            • Received: 1 November 2020
            Published in csur Volume 54, Issue 9

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • survey
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format