skip to main content
research-article
Best Paper

Fast Corotated Elastic SPH Solids with Implicit Zero-Energy Mode Control

Published:27 September 2021Publication History
Skip Abstract Section

Abstract

We develop a new operator splitting formulation for the simulation of corotated linearly elastic solids with Smoothed Particle Hydrodynamics (SPH). Based on the technique of Kugelstadt et al. [2018] originally developed for the Finite Element Method (FEM), we split the elastic energy into two separate terms corresponding to stretching and volume conservation, and based on this principle, we design a splitting scheme compatible with SPH. The operator splitting scheme enables us to treat the two terms separately, and because the stretching forces lead to a stiffness matrix that is constant in time, we are able to prefactor the system matrix for the implicit integration step. Solid-solid contact and fluid-solid interaction is achieved through a unified pressure solve. We demonstrate more than an order of magnitude improvement in computation time compared to a state-of-the-art SPH simulator for elastic solids.

We further improve the stability and reliability of the simulation through several additional contributions. We introduce a new implicit penalty mechanism that suppresses zero-energy modes inherent in the SPH formulation for elastic solids, and present a new, physics-inspired sampling algorithm for generating high-quality particle distributions for the rest shape of an elastic solid. We finally also devise an efficient method for interpolating vertex positions of a high-resolution surface mesh based on the SPH particle positions for use in high-fidelity visualization.

Skip Supplemental Material Section

Supplemental Material

References

  1. Muzaffer Akbay, Nicholas Nobles, Victor Zordan, and Tamar Shinar. 2018. An Extended Partitioned Method for Conservative Solid-fluid Coupling. ACM Transactions on Graphics 37, 4, Article 86 (July 2018), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias Teschner. 2012. Versatile rigid-fluid coupling for incompressible SPH. ACM Transactions on Graphics 31, 4 (July 2012), 1--8. https://doi.org/10.1145/2185520.2335413Google ScholarGoogle ScholarCross RefCross Ref
  3. Markus Becker, Markus Ihmsen, and Matthias Teschner. 2009. Corotated SPH for deformable solids. In Proceedings of Eurographics Conference on Natural Phenomena. 27--34.Google ScholarGoogle Scholar
  4. Jan Bender et al. 2021. SPlisHSPlasH Library. https://github.com/InteractiveComputerGraphics/SPlisHSPlasH.Google ScholarGoogle Scholar
  5. Jan Bender and Dan Koschier. 2017. Divergence-Free SPH for Incompressible and Viscous Fluids. IEEE Transactions on Visualization and Computer Graphics 23, 3 (2017), 1193--1206.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Jan Bender, Dan Koschier, Tassilo Kugelstadt, and Marcel Weiler. 2019. Turbulent Micropolar SPH Fluids with Foam. IEEE Transactions on Visualization and Computer Graphics 25, 6 (2019), 2284--2295. https://doi.org/10.1109/TVCG.2018.2832080Google ScholarGoogle ScholarCross RefCross Ref
  7. Jan Bender, Tassilo Kugelstadt, Marcel Weiler, and Dan Koschier. 2020. Implicit Frictional Boundary Handling for SPH. IEEE Transactions on Visualization and Computer Graphics 26, 10(2020), 2982--2993. https://doi.org/10.1109/TVCG.2020.3004245Google ScholarGoogle ScholarCross RefCross Ref
  8. Jan Bender, Matthias Müller, and Miles Macklin. 2017. A Survey on Position Based Dynamics, 2017. In EUROGRAPHICS 2017 Tutorials. Eurographics Association.Google ScholarGoogle Scholar
  9. J. Bonet and T.-S. L. Lok. 1999. Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations. Computer Methods in Applied Mechanics and Engineering 180, 1 (1999), 97--115.Google ScholarGoogle ScholarCross RefCross Ref
  10. Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Transactions on Graphics 21, 3 (2002).Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Wei Chen, Fei Zhu, Jing Zhao, Sheng Li, and Guoping Wang. 2018. Peridynamics-Based Fracture Animation for Elastoplastic Solids. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 112--124.Google ScholarGoogle Scholar
  12. Xiao-Song Chen, Chen-Feng Li, Geng-Chen Cao, Yun-Tao Jiang, and Shi-Min Hu. 2020. A moving least square reproducing kernel particle method for unified multiphase continuum simulation. ACM Transactions on Graphics 39, 6 (2020), 1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Jens Cornelis, Jan Bender, Christoph Gissler, Markus Ihmsen, and Matthias Teschner. 2019. An optimized source term formulation for incompressible SPH. The Visual Computer 35, 4 (2019), 579--590.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Francois Dagenais, Jonathan Gagnon, and Eric Paquette. 2012. A Prediction-Correction Approach for Stable SPH Fluid Simulation from Liquid to Rigid. In Computer Graphics International. 1--10.Google ScholarGoogle Scholar
  15. Mathieu Desbrun and Marie-Paule Gascuel. 1996. Smoothed Particles: A new paradigm for animating highly deformable bodies. In Eurographics Workshop on Computer Animation and Simulation. 61--76.Google ScholarGoogle ScholarCross RefCross Ref
  16. Yu Fang, Ziyin Qu, Minchen Li, Xinxin Zhang, Yixin Zhu, Mridul Aanjaneya, and Chenfanfu Jiang. 2020. IQ-MPM: an interface quadrature material point method for non-sticky strongly two-way coupled nonlinear solids and fluids. ACM Transactions on Graphics 39, 4 (2020), 51--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Yun Fei, Christopher Batty, Eitan Grinspun, and Changxi Zheng. 2019. A multi-scale model for coupling strands with shear-dependent liquid. ACM Transactions on Graphics (TOG) 38, 6 (2019), 1--20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Yun (Raymond) Fei, Christopher Batty, Eitan Grinspun, and Changxi Zheng. 2018. A Multi-scale Model for Simulating Liquid-fabric Interactions. ACM Transactions on Graphics 37, 4, Article 51 (July 2018), 16 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Yun (Raymond) Fei, Henrique Teles Maia, Christopher Batty, Changxi Zheng, and Eitan Grinspun. 2017. A Multi-Scale Model for Simulating Liquid-Hair Interactions. ACM Transactions on Graphics 36, 4 (2017). https://doi.org/10.1145/3072959.3073630Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Georg C. Ganzenmüller. 2015. An hourglass control algorithm for Lagrangian Smooth Particle Hydrodynamics. Computer Methods in Applied Mechanics and Engineering 286 (apr 2015), 87--106.Google ScholarGoogle Scholar
  21. Dan Gerszewski, Haimasree Bhattacharya, and Adam W Bargteil. 2009. A Point-based Method for Animating Elastoplastic Solids. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Vol. 1. 133--138.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Christoph Gissler, Andreas Henne, Stefan Band, Andreas Peer, and Matthias Teschner. 2020. An Implicit Compressible SPH Solver for Snow Simulation. ACM Transactions on Graphics 39, 4 (august 2020), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Christoph Gissler, Andreas Peer, Stefan Band, Jan Bender, and Matthias Teschner. 2019. Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Coupling. ACM Transactions on Graphics 38, 1 (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Gaël Guennebaud, Benoît Jacob, et al. 2021. Eigen v3. http://eigen.tuxfamily.org.Google ScholarGoogle Scholar
  25. Xuchen Han, Theodore F. Gast, Qi Guo, Stephanie Wang, Chenfanfu Jiang, and Joseph Teran. 2019. A Hybrid Material Point Method for Frictional Contact with Diverse Materials. Proc. ACM Comput. Graph. Interact. Tech. 2, 2, Article 17 (July 2019), 24 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. X. He, H. Wang, and E. Wu. 2018. Projective Peridynamics for Modeling Versatile Elastoplastic Materials. IEEE Transactions on Visualization and Computer Graphics (2018), 1.Google ScholarGoogle Scholar
  27. M. Huber, B. Eberhardt, and D. Weiskopf. 2015. Boundary Handling at Cloth-Fluid Contact. Computer Graphics Forum 34, 1 (2015), 14--25.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner. 2014. Implicit incompressible SPH. IEEE Transactions on Visualization and Computer Graphics 20, 3 (2014), 426--435.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015a. The Affine Particle-In-Cell Method. ACM Transactions on Graphics 34, 4 (July 2015), 51:1--51:10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Min Jiang, Yahan Zhou, Rui Wang, Richard Southern, and Jian Jun Zhang. 2015b. Blue noise sampling using an SPH-based method. ACM Transactions on Graphics 34, 6 (2015), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ben Jones, Stephen Ward, Ashok Jallepalli, Joseph Perenia, and Adam W Bargteil. 2014. Deformation embedding for point-based elastoplastic simulation. ACM Transactions on Graphics 33, 2 (2014), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. R. Keiser, Bart Adams, D. Gasser, P. Bazzi, P. Dutre, and M. Gross. 2005. A unified Lagrangian approach to solid-fluid animation. In Proceedings of Eurographics/IEEE VGTC Symposium Point-Based Graphics. IEEE, 125--148.Google ScholarGoogle Scholar
  33. Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. 2019. Smoothed Particle Hydrodynamics Techniques for the Physics Based Simulation of Fluids and Solids. In EUROGRAPHICS 2019 Tutorials. Eurographics Association.Google ScholarGoogle Scholar
  34. Dan Koschier, Crispin Deul, Magnus Brand, and Jan Bender. 2017. An hp-Adaptive Discretization Algorithm for Signed Distance Field Generation. IEEE Transactions on Visualization and Computer Graphics 23, 10 (2017), 2208--2221.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Tassilo Kugelstadt, Dan Koschier, and Jan Bender. 2018. Fast Corotated FEM using Operator Splitting. Computer Graphics Forum 37, 8 (2018).Google ScholarGoogle Scholar
  36. J. A. Levine, A. W. Bargteil, C. Corsi, J. Tessendorf, and R. Geist. 2014. A Peridynamic Perspective on Spring-mass Fracture. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Copenhagen, Denmark) (SCA '14). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 47--55.Google ScholarGoogle Scholar
  37. Miles Macklin and Matthias Müller. 2013. Position Based Fluids. ACM Transactions on Graphics 32, 4 (2013), 1--5.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. 2014. Unified Particle Physics for Real-Time Applications. ACM Transactions on Graphics 33, 4 (2014), 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and Markus Gross. 2010. Unified Simulation of Elastic Rods, Shells, and Solids. ACM Transactions on Graphics 29, 4 (July 2010), 1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Joseph J Monaghan. 2012. Smoothed particle hydrodynamics and its diverse applications. Annual Review of Fluid Mechanics 44 (2012), 323--346.Google ScholarGoogle ScholarCross RefCross Ref
  41. Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2006. Position Based Dynamics. In Virtual Reality Interactions and Physical Simulations (VRIPHYS '06). Eurographics Association, 71--80. https://doi.org/10.2312/PE/vriphys/vriphys06/071-080Google ScholarGoogle Scholar
  42. Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005. Meshless Deformations Based on Shape Matching. ACM Transactions on Graphics 24, 3 (2005), 471--478.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. 2004. Point based animation of elastic, plastic and melting objects. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 141.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and Mark Carlson. 2006. Physically Based Deformable Models in Computer Graphics. Computer Graphics Forum 25, 4 (2006), 809--836.Google ScholarGoogle ScholarCross RefCross Ref
  45. Mark Pauly, Richard Keiser, Bart Adams, Philip Dutré, Markus Gross, and Leonidas J Guibas. 2005. Meshless Animation of Fracturing Solids. ACM Transactions on Graphics 24, 3 (2005), 957--964.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Andreas Peer, Christoph Gissler, Stefan Band, and Matthias Teschner. 2018. An Implicit SPH Formulation for Incompressible Linearly Elastic Solids. Computer Graphics Forum 37, 6 (2018), 135--148.Google ScholarGoogle ScholarCross RefCross Ref
  47. A. Peer, M. Ihmsen, J. Cornelis, and M. Teschner. 2015. An Implicit Viscosity Formulation for SPH Fluids. ACM Transactions on Graphics 34, 4 (2015), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Xavier Provot. 1995. Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior. In Graphics Interface. AK Peters, 147--154.Google ScholarGoogle Scholar
  49. Stefan Reinhardt, Markus Huber, Bernhard Eberhardt, and Daniel Weiskopf. 2017. Fully asynchronous SPH simulation. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 2.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Stefan Reinhardt, Tim Krake, Bernhard Eberhardt, and Daniel Weiskopf. 2019. Consistent Shepard Interpolation for SPH-Based Fluid Animation. ACM Transactions on Graphics 38, 6, Article 189 (2019), 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Nadine Abu Rumman, Prapanch Nair, Patric Müller, Loïc Barthe, and David Vanderhaeghe. 2019. ISPH-PBD: coupled simulation of incompressible fluids and deformable bodies. The Visual Computer (2019), 1--18.Google ScholarGoogle Scholar
  52. Eftychios Sifakis and Jernej Barbic. 2012. FEM Simulation of 3D Deformable Solids. In ACM SIGGRAPH Courses. 1--50.Google ScholarGoogle Scholar
  53. Barbara Solenthaler, Jürg Schläfli, and Renato Pajarola. 2007. A unified particle model for fluid-solid interactions. Computer Animation and Virtual Worlds 18, 1 (2007), 69--82.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Alexey Stomakhin, Craig Schroeder, Chenfanfu Jiang, Lawrence Chai, Joseph Teran, and Andrew Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Transactions on Graphics 33, 4 (July 2014), 1--11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Matthias Teschner, Bruno Heidelberger, Matthias Müller, and Markus Gross. 2004. A Versatile and Robust Model for Geometrically Complex Deformable Solids. In Computer Graphics International (CGI '04). IEEE Computer Society, 312--319.Google ScholarGoogle ScholarCross RefCross Ref
  56. Marcel Weiler, Dan Koschier, and Jan Bender. 2016. Projective Fluids. In ACM Motion in Games. 1--6.Google ScholarGoogle Scholar
  57. Marcel Weiler, Dan Koschier, Magnus Brand, and Jan Bender. 2018. A Physically Consistent Implicit Viscosity Solver for SPH Fluids. Computer Graphics Forum 37, 2 (2018).Google ScholarGoogle Scholar
  58. Yahan Zhou, Zhaoliang Lun, Evangelos Kalogerakis, and Rui Wang. 2013. Implicit Integration for Particle-based Simulation of Elasto-Plastic Solids. Computer Graphics Forum 32, 7 (Nov. 2013), 215--223.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fast Corotated Elastic SPH Solids with Implicit Zero-Energy Mode Control

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Proceedings of the ACM on Computer Graphics and Interactive Techniques
      Proceedings of the ACM on Computer Graphics and Interactive Techniques  Volume 4, Issue 3
      September 2021
      268 pages
      EISSN:2577-6193
      DOI:10.1145/3488568
      Issue’s Table of Contents

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 September 2021
      Published in pacmcgit Volume 4, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader