skip to main content
10.1145/3481549.3481563acmotherconferencesArticle/Chapter ViewAbstractPublication PagesvinciConference Proceedingsconference-collections
research-article

PropellerHand: A Hand-Mounted, Propeller-Based Force Feedback Device

Published:27 November 2021Publication History

ABSTRACT

Immersive analytics is a fast growing field that is often applied in virtual reality (VR). VR environments often lack immersion due to missing sensory feedback when interacting with data. Existing haptic devices are often expensive, stationary, or occupy the user’s hand, preventing them from grasping objects or using a controller. We propose PropellerHand, an ungrounded hand-mounted haptic device with two rotatable propellers, that allows exerting forces on the hand without obstructing hand use. PropellerHand is able to simulate feedback such as weight and torque by generating thrust up to 11 N in 2-DOF and a torque of 1.87 Nm in 2-DOF. Its design builds on our experience from quantitative and qualitative experiments with different form factors and parts. We evaluated our final version through a qualitative user study in various VR scenarios that required participants to manipulate virtual objects in different ways, while changing between torques and directional forces. Results show that PropellerHand improves users’ immersion in virtual reality.

Skip Supplemental Material Section

Supplemental Material

References

  1. 2020. Unity Asset Store - VR Beginner: The Escape Room. Retrieved September 17, 2020 from https://assetstore.unity.com/packages/essentials/tutorial-projects/vr-beginner-the-escape-room-163264Google ScholarGoogle Scholar
  2. Muhammad Abdullah, Minji Kim, Waseem Hassan, Yoshihiro Kuroda, and Seokhee Jeon. 2017. HapticDrone: An Encountered-Type Kinesthetic Haptic Interface with Controllable Force Feedback: Initial Example for 1D Haptic Feedback. In UIST ’17. ACM, 115–117. https://doi.org/10.1145/3131785.3131821Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Parastoo Abtahi, Benoit Landry, Jackie Yang, Marco Pavone, Sean Follmer, and James A. Landay. 2019. Beyond The Force: Using Quadcopters to Appropriate Objects and the Environment for Haptics in Virtual Reality. In CHI ’19. ACM, 1–13. https://doi.org/10.1145/3290605.3300589Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Mohammed Al-Sada, Keren Jiang, Shubhankar Ranade, Xinlei Piao, Thomas Höglund, and Tatsuo Nakajima. 2018. HapticSerpent: A Wearable Haptic Feedback Robot for VR. In CHI EA ’18. ACM, 1–6. https://doi.org/10.1145/3170427.3188518Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Ricardo S Avila and Lisa M Sobierajski. 1996. A haptic interaction method for volume visualization. In Proceedings of Seventh Annual IEEE Visualization’96. IEEE, 197–204.Google ScholarGoogle ScholarCross RefCross Ref
  6. Diego Borro, Joan Savall, Aiert Amundarain, Jorge Juan Gil, Alejandro Garcia-Alonso, and Luis Matey. 2004. A large Haptic Device for Aircraft Engine Maintainability. Computer Graphics and Applications 24, 6 (2004), 70–74. https://doi.org/10.1109/MCG.2004.45Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Lisa JK Durbeck, Nicholas J Macias, David M Weinstein, Chris R Johnson, and John M Hollerbach. 1998. SCIRun haptic display for scientific visualization. In Phantom Users Group Meetings.Google ScholarGoogle Scholar
  8. Cathy Fang, Yang Zhang, Matthew Dworman, and Chris Harrison. 2020. Wireality: Enabling Complex Tangible Geometries in Virtual Reality with Worn Multi-String Haptics. In CHI ’20. ACM, 1–10. https://doi.org/10.1145/3313831.3376470Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Jason P Fritz and Kenneth E Barner. 1999. Design of a haptic data visualization system for people with visual impairments. IEEE Transactions on rehabilitation engineering 7, 3(1999), 372–384.Google ScholarGoogle ScholarCross RefCross Ref
  10. Antonio Gomes, Calvin Rubens, Sean Braley, and Roel Vertegaal. 2016. BitDrones: Towards Using 3D Nanocopter Displays as Interactive Self-Levitating Programmable Matter. In CHI ’16. ACM, 770–780. https://doi.org/10.1145/2858036.2858519Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hakan Gurocak, Sankar Jayaram, Benjamin Parrish, and Uma Jayaram. 2003. Weight Sensation in Virtual Environments Using a Haptic Device With Air Jets. JCISE 3, 2 (2003), 130–135. https://doi.org/10.1115/1.1576808Google ScholarGoogle Scholar
  12. Seongkook Heo, Christina Chung, Geehyuk Lee, and Daniel Wigdor. 2018. Thor’s Hammer: An Ungrounded Force Feedback Device Utilizing Propeller-Induced Propulsive Force. In CHI ’18. ACM, 1–11. https://doi.org/10.1145/3173574.3174099Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Matthias Hoppe, Pascal Knierim, Thomas Kosch, Markus Funk, Lauren Futami, Stefan Schneegass, Niels Henze, Albrecht Schmidt, and Tonja Machulla. 2018. VRHapticDrones: Providing Haptics in Virtual Reality through Quadcopters. In MUM 2018. ACM, 7–18. https://doi.org/10.1145/3282894.3282898Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Seungwoo Je, Myung Jin Kim, Woojin Lee, Byungjoo Lee, Xing-Dong Yang, Pedro Lopes, and Andrea Bianchi. 2019. Aero-Plane: A Handheld Force-Feedback Device That Renders Weight Motion Illusion on a Virtual 2D Plane. In UIST ’19. ACM, 763–775. https://doi.org/10.1145/3332165.3347926Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Seungwoo Je, Hyelip Lee, Myung Jin Kim, and Andrea Bianchi. 2018. Wind-Blaster: A Wearable Propeller-Based Prototype That Provides Ungrounded Force-Feedback. In SIGGRAPH ’18. ACM, Article 23. https://doi.org/10.1145/3214907.3214915Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Pascal Knierim, Thomas Kosch, Valentin Schwind, Markus Funk, Francisco Kiss, Stefan Schneegass, and Niels Henze. 2017. Tactile Drones - Providing Immersive Tactile Feedback in Virtual Reality through Quadcopters. In CHI EA ’17. ACM, 433–436. https://doi.org/10.1145/3027063.3050426Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Irene A Kuling, Kaj Gijsbertse, Bouke N Krom, Kees J van Teeffelen, and Jan BF van Erp. 2020. Haptic Feedback in a Teleoperated Box & Blocks Task. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications. Springer, 96–104.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Pedro Lopes, Sijing You, Lung-Pan Cheng, Sebastian Marwecki, and Patrick Baudisch. 2017. Providing Haptics to Walls & Heavy Objects in Virtual Reality by Means of Electrical Muscle Stimulation. In CHI ’17. ACM, 1471–1482. https://doi.org/10.1145/3025453.3025600Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Sabrina Paneels and Jonathan C Roberts. 2009. Review of designs for haptic data visualization. IEEE Transactions on Haptics 3, 2 (2009), 119–137.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Evan Pezent, Marcia K. O’Malley, Ali Israr, Majed Samad, Shea Robinson, Priyanshu Agarwal, Hrvoje Benko, and Nicholas Colonnese. 2020. Explorations of Wrist Haptic Feedback for AR/VR Interactions with Tasbi. In CHI EA ’20. ACM, 1–4. https://doi.org/10.1145/3334480.3383151Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Joseph M Romano and Katherine J Kuchenbecker. 2009. The AirWand: Design and Characterization of a Large-Workspace Haptic Device. In ICRA ’09. IEEE, 1461–1466. https://doi.org/10.1109/ROBOT.2009.5152339Google ScholarGoogle ScholarCross RefCross Ref
  22. Tomoya Sasaki, Richard Sahala Hartanto, Kao-Hua Liu, Keitarou Tsuchiya, Atsushi Hiyama, and Masahiko Inami. 2018. Leviopole: Mid-Air Haptic Interactions Using Multirotor. In SIGGRAPH ’18. ACM, Article 12. https://doi.org/10.1145/3214907.3214913Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Hasti Seifi, Farimah Fazlollahi, Michael Oppermann, John Andrew Sastrillo, Jessica Ip, Ashutosh Agrawal, Gunhyuk Park, Katherine J. Kuchenbecker, and Karon E. MacLean. 2019. Haptipedia: Accelerating Haptic Device Discovery to Support Interaction & Engineering Design. In CHI ’19. ACM, 1–12. https://doi.org/10.1145/3290605.3300788Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Yuriko Suzuki and Minoru Kobayashi. 2005. Air Jet Driven Force Feedback in Virtual Reality. Computer Graphics and Applications 25, 1 (2005), 44–47. https://doi.org/10.1109/MCG.2005.1Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. T-Motor. [n.d.]. F40 PROIII. https://uav-en.tmotor.com/2019/Motor_0109/196.htmlGoogle ScholarGoogle Scholar
  26. Hsin-Ruey Tsai, Ching-Wen Hung, Tzu-Chun Wu, and Bing-Yu Chen. 2020. ElastOscillation: 3D Multilevel Force Feedback for Damped Oscillation on VR Controllers. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 1–12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Hsin-Ruey Tsai, Jun Rekimoto, and Bing-Yu Chen. 2019. Elasticvr: Providing multilevel continuously-changing resistive force and instant impact using elasticity for vr. In Proceedings of the CHI Conference on Human Factors in Computing Systems. 1–10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Olivier AJ Van der Meijden and Marlies P Schijven. 2009. The Value of Haptic Feedback in Conventional and Robot-Assisted Minimal Invasive Surgery and Virtual Reality Training: a Current Review. Surgical endoscopy 23, 6 (2009), 1180–1190. https://doi.org/10.1007/s00464-008-0298-xGoogle ScholarGoogle ScholarCross RefCross Ref
  29. Kyle N Winfree, Jamie Gewirtz, Thomas Mather, Jonathan Fiene, and Katherine J Kuchenbecker. 2009. A High Fidelity Ungrounded Torque Feedback Device: The iTorqU 2.0. In World Haptics ’09. IEEE, 261–266. https://doi.org/10.1109/WHC.2009.4810866Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Frederik Winther, Linoj Ravindran, Kasper Paabøl Svendsen, and Tiare Feuchtner. 2020. Design and Evaluation of a VR Training Simulation for Pump Maintenance. In CHI EA ’20. ACM, 1–8. https://doi.org/10.1145/3334480.3375213Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Pingjun Xia. 2016. Haptics for Product Design and Manufacturing Simulation. IEEE Transactions on Haptics 9, 3 (2016), 358–375. https://doi.org/10.1109/TOH.2016.2554551Google ScholarGoogle ScholarCross RefCross Ref
  32. Kotaro Yamaguchi, Ginga Kato, Yoshihiro Kuroda, Kiyoshi Kiyokawa, and Haruo Takemura. 2016. A Non-Grounded and Encountered-Type Haptic Display Using a Drone. In SUI ’16. ACM, 43–46. https://doi.org/10.1145/2983310.2985746Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Hiroaki Yano, Masayuki Yoshie, and Hiroo Iwata. 2003. Development of a Non-Grounded Haptic Interface using the Gyro Effect. In HAPTICS ’03. IEEE, 32–39. https://doi.org/10.1109/HAPTIC.2003.1191223Google ScholarGoogle ScholarCross RefCross Ref
  34. Soojeong Yoo, Sunkyung Kim, and Youngho Lee. 2020. Learning by Doing: Evaluation of an Educational VR Application for the Care of Schizophrenic Patients. In CHI EA ’20. ACM, 1–6. https://doi.org/10.1145/3334480.3382851Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. André Zenner and Antonio Krüger. 2019. Drag:On: A Virtual Reality Controller Providing Haptic Feedback Based on Drag and Weight Shift. In CHI ’19. ACM, 1–12. https://doi.org/10.1145/3290605.3300441Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Other conferences
    VINCI '21: Proceedings of the 14th International Symposium on Visual Information Communication and Interaction
    September 2021
    139 pages
    ISBN:9781450386470
    DOI:10.1145/3481549

    Copyright © 2021 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 27 November 2021

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate71of193submissions,37%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format