skip to main content
survey

A Comprehensive Survey on Interoperability for IIoT: Taxonomy, Standards, and Future Directions

Published: 23 November 2021 Publication History

Abstract

In the era of Industry 4.0, the Internet-of-Things (IoT) performs the driving position analogous to the initial industrial metamorphosis. IoT affords the potential to couple machine-to-machine intercommunication and real-time information-gathering within the industry domain. Hence, the enactment of IoT in the industry magnifies effective optimization, authority, and data-driven judgment. However, this field undergoes several interoperable issues, including large numbers of heterogeneous IoT gadgets, tools, software, sensing, and processing components, joining through the Internet, despite the deficiency of communication protocols and standards. Recently, various interoperable protocols, platforms, standards, and technologies are enhanced and altered according to the specifications of the applicability in industrial applications. However, there are no recent survey papers that primarily examine various interoperability issues that Industrial IoT (IIoT) faces. In this review, we investigate the conventional and recent developments of relevant state-of-the-art IIoT technologies, frameworks, and solutions for facilitating interoperability between different IIoT components. We also discuss several interoperable IIoT standards, protocols, and models for digitizing the industrial revolution. Finally, we conclude this survey with an inherent discussion of open challenges and directions for future research.

References

[1]
Mohammad Aazam, Khaled A. Harras, and Sherali Zeadally. 2019. Fog computing for 5G tactile industrial Internet of Things: QoE-aware resource allocation model. IEEE Trans. Industr. Info. 15, 5 (2019), 3085–3092.
[2]
M. Aazam, K. A. Harras, and S. Zeadally. 2019. Fog computing for 5G tactile industrial internet of things: QoE-aware resource allocation model. IEEE Trans. Industr. Info. 15, 5 (2019), 3085–3092. https://doi.org/10.1109/TII.2019.2902574
[3]
Giuseppe Aceto, Valerio Persico, and Antonio Pescapé. 2019. A survey on information and communication technologies for Industry 4.0: State-of-the-art, taxonomies, perspectives, and challenges. IEEE Commun. Surveys Tutor. 21, 4 (2019), 3467–3501.
[4]
Mainak Adhikari and Hemant Gianey. 2019. Energy efficient offloading strategy in fog-cloud environment for IoT applications. Internet Things 6 (2019), 100053.
[5]
Mamta Agiwal, Abhishek Roy, and Navrati Saxena. 2016. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun. Surveys Tutor. 18, 3 (2016), 1617–1655.
[6]
Bengt Ahlgren, Markus Hidell, and Edith C.-H. Ngai. 2016. Internet of things for smart cities: Interoperability and open data. IEEE Internet Computing 20, 6 (2016), 52–56.
[7]
M. Ahmed-Nacer, W. Gaaloul, and S. Tata. 2017. OCCI-compliant cloud configuration simulation. In Proceedings of the IEEE International Conference on Edge Computing (EDGE’17). 73–81.
[8]
Yuan Ai, Mugen Peng, and Kecheng Zhang. 2018. Edge computing technologies for Internet of Things: A primer. Dig. Commun. Netw. 4, 2 (2018), 77–86.
[9]
A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. 2015. Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Commun. Surveys Tutor. 17, 4 (2015), 2347–2376. https://doi.org/10.1109/COMST.2015.2444095
[10]
Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and Moussa Ayyash. 2015. Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Commun. Surveys Tutor. 17, 4 (2015), 2347–2376.
[11]
Eyhab Al-Masri. 2018. QoS-aware IIoT microservices architecture. In Proceedings of the IEEE International Conference on Industrial Internet (ICII’18). IEEE, 171–172.
[12]
Mahdi Ben Alaya, Samir Medjiah, Thierry Monteil, and Khalil Drira. 2015. Toward semantic interoperability in oneM2M architecture. IEEE Commun. Mag. 53, 12 (2015), 35–41.
[13]
Mamdouh Alenezi, Khaled Almustafa, and Khalim Amjad Meerja. 2019. Cloud-based SDN and NFV architectures for IoT infrastructure. Egypt. Info. J. 20, 1 (2019), 1–10.
[14]
Anum Ali, Ghalib A. Shah, Muhammad Omer Farooq, and Usman Ghani. 2017. Technologies and challenges in developing machine-to-machine applications: A survey. J. Netw. Comput. Appl.s 83 (2017), 124–139.
[15]
Gianluca Aloi, Giuseppe Caliciuri, Giancarlo Fortino, Raffaele Gravina, Pasquale Pace, Wilma Russo, and Claudio Savaglio. 2017. Enabling IoT interoperability through opportunistic smartphone-based mobile gateways. J. Netw. Comput. Appl. 81 (2017), 74–84.
[16]
Asfand Yar Awan, Mudassar Ali, Muhammad Naeem, Farhan Qamar, and Muhammad Nadeem Sial. 2020. Joint network admission control, mode assignment and power allocation in energy harvesting aided D2D communication. IEEE Trans. Industr. Info. 16, 2 (2020), 1914–1923. DOI:https://doi.org/10.1109/TII.2019.2922667
[17]
Geert Arnout Awater and Ran-Hong Yan. 2006. Interoperability for bluetooth/IEEE 802.11. U.S. Patent 7,046,649.
[18]
Claudio Badii, Pierfrancesco Bellini, Angelo Difino, and Paolo Nesi. 2020. Smart city IoT platform respecting GDPR privacy and security aspects. IEEE Access 8 (2020), 23601–23623.
[19]
Garvita Bajaj, Rachit Agarwal, Pushpendra Singh, Nikolaos Georgantas, and Valerie Issarny. 2017. A study of existing ontologies in the IoT-domain. Retrieved from https://arXiv:1707.00112.
[20]
Alcardo Alex Barakabitze, Arslan Ahmad, Rashid Mijumbi, and Andrew Hines. 2020. 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Comput. Netw. 167 (2020), 106984.
[21]
Intidhar Bedhief, Luca Foschini, Paolo Bellavista, Meriem Kassar, and Taoufik Aguili. 2019. Toward self-adaptive software defined fog networking architecture for IIoT and Industry 4.0. In Proceedings of the IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD’19). IEEE, 1–5.
[22]
Oladayo Bello, Sherali Zeadally, and Mohamad Badra. 2017. Network layer inter-operation of device-to-device communication technologies in internet of things (IoT). Ad Hoc Netw. 57 (2017), 52–62.
[23]
Nikos Benias and Angelos P. Markopoulos. 2017. A review on the readiness level and cyber-security challenges in Industry 4.0. In Proceedings of the South Eastern European Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM’17). IEEE, 1–5.
[24]
Alexander Bergmayr, Javier Troya Castilla, Patrick Neubauer, Manuel Wimmer, and Gerti Kappel. 2014. UML-based cloud application modeling with libraries, profiles, and templates. In Proceedings of the 2nd International Workshop on Model-Driven Engineering on and for the Cloud (CloudMDE’14), co-located with the 17th International Conference on Model Driven Engineering Languages and Systems (MoDELS’14). 55–65.
[25]
Alexander Bergmayr, Manuel Wimmer, Gerti Kappel, and Michael Grossniklaus. 2014. Cloud modeling languages by example. In Proceedings of the IEEE 7th International Conference on Service-Oriented Computing and Applications. IEEE, 137–146.
[26]
M. Bermudez-Edo, T. Elsaleh, P. Barnaghi, and K. Taylor. 2016. IoT-lite: A lightweight semantic model for the internet of things. In Proceedings of the IEEE International Conferences on Ubiquitous Intelligence Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld’16). 90–97.
[27]
Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. 2014. TOSCA: Portable automated deployment and management of cloud applications. In Advanced Web Services. Springer, 527–549.
[28]
Gordon S. Blair, Massimo Paolucci, Paul Grace, and Nikolaos Georgantas. 2011. Interoperability in complex distributed systems. In Proceedings of the International School on Formal Methods for the Design of Computer, Communication and Software Systems. Springer, 1–26.
[29]
D. Bodson and R. M. Fenichel. 1977. Development of a federal standard to enhance interoperability of government maritime mobile telecommunications. IEEE Trans. Vehic. Technol. 26, 3 (Aug. 1977), 285–287. https://doi.org/10.1109/T-VT.1977.23693
[30]
Michel S. Bonfim, Kelvin L. Dias, and Stenio F. L. Fernandes. 2019. Integrated NFV/SDN architectures: A systematic literature review. ACM Comput. Surveys 51, 6 (2019), 1–39.
[31]
Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog computing and its role in the internet of things. In Proceedings of the 1st Edition of the MCC Workshop on Mobile Cloud Computing. 13–16.
[32]
Hugh Boyes, Bil Hallaq, Joe Cunningham, and Tim Watson. 2018. The industrial internet of things (IIoT): An analysis framework. Comput. Industry 101 (2018), 1–12.
[33]
Arne Bröring, Stefan Schmid, Corina-Kim Schindhelm, Abdelmajid Khelil, Sebastian Käbisch, Denis Kramer, Danh Le Phuoc, Jelena Mitic, Darko Anicic, and Ernest Teniente. 2017. Enabling IoT ecosystems through platform interoperability. IEEE Softw. 34, 1 (2017), 54–61.
[34]
Arne Bröring, Jan Seeger, Manos Papoutsakis, Konstantinos Fysarakis, and Ahmad Caracalli. 2020. Networking-aware IoT application development. Sensors 20, 3 (2020), 897.
[35]
Arne Bröring, Andreas Ziller, Victor Charpenay, Aparna S. Thuluva, Darko Anicic, Stefan Schmid, Achille Zappa, Mari Paz Linares, Lars Mikkelsen, and Christian Seidel. 2018. The BIG IoT API-semantically enabling IoT interoperability. IEEE Pervas. Comput. 17, 4 (2018), 41–51.
[36]
Rajkumar Buyya, Satish Narayana Srirama, Giuliano Casale, Rodrigo Calheiros, Yogesh Simmhan, Blesson Varghese, Erol Gelenbe, Bahman Javadi, Luis Miguel Vaquero, Marco A. S. Netto et al. 2018. A manifesto for future generation cloud computing: Research directions for the next decade. ACM Comput. Surveys 51, 5 (2018), 1–38.
[37]
Baotong Chen, Jiafu Wan, Lei Shu, Peng Li, Mithun Mukherjee, and Boxing Yin. 2017. Smart factory of Industry 4.0: Key technologies, application case, and challenges. IEEE Access 6 (2017), 6505–6519.
[38]
J. Chen, J. Wu, H. Liang, S. Mumtaz, J. Li, K. Konstantin, A. K. Bashir, and R. Nawaz. 2020. Collaborative trust blockchain-based unbiased control transfer mechanism for industrial automation. IEEE Trans. Industry Appl. 56, 4 (2020), 4478–4488.
[39]
Qingping Chi, Hairong Yan, Chuan Zhang, Zhibo Pang, and Li Da Xu. 2014. A reconfigurable smart sensor interface for industrial WSN in IoT environment. IEEE Trans. Industr. Inform. 10, 2 (2014), 1417–1425.
[40]
Giovanna Culot, Fabio Fattori, Matteo Podrecca, and Marco Sartor. 2019. Addressing Industry 4.0 cybersecurity challenges. IEEE Eng. Manage. Rev. 47, 3 (2019), 79–86.
[41]
Li Da Xu, Wu He, and Shancang Li. 2014. Internet of things in industries: A survey. IEEE Trans. Industr. Inform. 10, 4 (2014), 2233–2243.
[42]
Patrick Dallasega. 2018. Industry 4.0 fostering construction supply chain management: Lessons learned from engineer-to-order suppliers. IEEE Eng. Manage. Rev. 46, 3 (2018), 49–55.
[43]
Jaime Delgado, Jose Prados, and Eva Rodriguez. 2005. Profiles for interoperability between MPEG-21 REL and OMA DRM. In Proceedings of the 7th IEEE International Conference on E-Commerce Technology (CEC’05). IEEE, 518–521.
[44]
Der-Jiunn Deng, Ming Gan, Yu-Chen Guo, Jian Yu, Ying-Pei Lin, Shao-Yu Lien, and Kwang-Cheng Chen. 2019. IEEE 802.11 ba: Low-power wake-up radio for green IoT. IEEE Commun. Mag. 57, 7 (2019), 106–112.
[45]
Pratikkumar Desai, Amit Sheth, and Pramod Anantharam. 2015. Semantic gateway as a service architecture for IoT interoperability. In Proceedings of the IEEE International Conference on Mobile Services. IEEE, 313–319.
[46]
B. Di Martino, M. Rak, M. Ficco, A. Esposito, S. A. Maisto, and S. Nacchia. 2018. Internet of things reference architectures, security and interoperability: A survey. Internet Things 1 (2018), 99–112.
[47]
Mamadou Bilo Doumbouya, Bernard Kamsu-Foguem, Hugues Kenfack, and Clovis Foguem. 2014. Telemedicine using mobile telecommunication: Towards syntactic interoperability in teleexpertise. Telemat. Inform. 31, 4 (2014), 648–659.
[48]
Jens Eliasson, Jerker Delsing, Hasan Derhamy, Zoran Salcic, and Kevin Wang. 2015. Towards industrial internet of things: An efficient and interoperable communication framework. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT’15). IEEE, 2198–2204.
[49]
T. Elsaleh, M. Bermudez-Edo, S. Enshaeifar, S. T. Acton, R. Rezvani, and P. Barnaghi. 2019. IoT-Stream: A lightweight ontology for internet of things data streams. In Proceedings of the Global IoT Summit (GIoTS’19). 1–6.
[50]
Ulrich Epple, Martin Mertens, Florian Palm, and Mahyar Azarmipour. 2017. Using properties as a semantic base for interoperability. IEEE Trans. Industr. Inform. 13, 6 (2017), 3411–3419.
[51]
Santiago Figueroa-Lorenzo, Javier Añorga, and Saioa Arrizabalaga. 2020. A survey of IIoT protocols: A measure of vulnerability risk analysis based on CVSS. ACM Comput. Surveys 53, 2 (2020), 1–53.
[52]
Holger Flatt, Sebastian Schriegel, Jürgen Jasperneite, Henning Trsek, and Heiko Adamczyk. 2016. Analysis of the cyber-security of Industry 4.0 technologies based on RAMI 4.0 and identification of requirements. In Proceedings of the IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA’16). IEEE, 1–4.
[53]
Francisco Fraile, Takuya Tagawa, Raul Poler, and Angel Ortiz. 2018. Trustworthy industrial IoT gateways for interoperability platforms and ecosystems. IEEE Internet Things J. 5, 6 (2018), 4506–4514.
[54]
Alejandro Germán Frank, Lucas Santos Dalenogare, and Néstor Fabián Ayala. 2019. Industry 4.0 technologies: Implementation patterns in manufacturing companies. Int. J. Product. Econ. 210 (2019), 15–26.
[55]
K. Gai, J. Guo, L. Zhu, and S. Yu. 2020. Blockchain meets cloud computing: A survey. IEEE Commun. Surveys Tutor. 22, 3 (2020), 2009–2030.
[56]
Alasdair Gilchrist. 2016. IIoT wan technologies and protocols. In Industry 4.0. Springer, 161–177.
[57]
Francis Griffiths and Melanie Ooi. 2018. The fourth industrial revolution-Industry 4.0 and IoT [trends in future I&M]. IEEE Instrument. Measure. Mag. 21, 6 (2018), 29–43.
[58]
Yajuan Guan, Juan C. Vasquez, Josep M. Guerrero, Natalie Samovich, Stefan Vanya, Viktor Oravec, Raúl García-Castro, Fernando Serena, María Poveda-Villalón, Carna Radojicic et al. 2017. An open virtual neighbourhood network to connect IoT infrastructures and smart objects–VICINITY. In Proceedings of the Global Internet of Things Summit (GIoTS’17), 1–6.
[59]
Amelie Gyrard, Christian Bonnet, and Karima Boudaoud. 2014. Enrich machine-to-machine data with semantic web technologies for cross-domain applications. In Proceedings of the IEEE World Forum on Internet of Things (WF-IoT’14). IEEE, 559–564.
[60]
Hany F. Habib, Nevin Fawzy, Mohammad Mahmoudian Esfahani, Osama A. Mohammed, and Sukumar Brahma. 2020. An enhancement of protection strategy for distribution network using the communication protocols. IEEE Trans. Industry Appl. 56, 2 (2020), 1240–1249.
[61]
Martin Hankel and Bosch Rexroth. 2015. The reference architectural model industrie 4.0 (RAMI 4.0). ZVEI 410 (Apr. 2015).
[62]
A. Hazra, M. Adhikari, T. Amgoth, and S. Srirama. 2020. Joint computation offloading and scheduling optimization of IoT applications in fog networks. IEEE Trans. Netw. Sci. Eng. 7, 4 (2020), 3266–3278. DOI:https://doi.org/10.1109/TNSE.2020.3021792
[63]
Abhishek Hazra, Mainak Adhikari, Tarachand Amgoth, and Satish Narayana Srirama. 2021. Stackelberg game for service deployment of IoT-enabled applications in 6G-aware fog networks. IEEE Internet Things J. 8, 7 (2021), 5185–5193. DOI:https://doi.org/10.1109/JIOT.2020.3041102
[64]
Abhishek Hazra and Prakash Choudhary. 2019. An advance forward pointer-based routing in wireless mesh network. In Applications of Artificial Intelligence Techniques in Engineering. Springer, 153–164.
[65]
Abhishek Hazra, Prakash Choudhary, and M. Sheetal Singh. 2021. Recent advances in deep learning techniques and its applications: An overview. Adv. Biomed. Eng. Technol. (2021), 103–122.
[66]
Abhishek Hazra, Prakash Choudhary, and Oinam Vivek. 2018. An advance mobility management scheme in wireless network. In Proceedings of the 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT’18). IEEE, 1–5.
[67]
Mario Hermann, Tobias Pentek, and Boris Otto. 2016. Design principles for industrie 4.0 scenarios. In Proceedings of the 49th Hawaii International Conference on System Sciences (HICSS’16). IEEE, 3928–3937.
[68]
Karl Francis Horlander. 2003. Device interoperability. U.S. Patent 6,504,847.
[69]
Xiangwang Hou, Zhiyuan Ren, Kun Yang, Chen Chen, Hailin Zhang, and Yao Xiao. 2019. IIoT-MEC: A novel mobile edge computing framework for 5G-enabled IIoT. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC’19). IEEE, 1–7.
[70]
Samer Jaloudi. 2019. Communication protocols of an industrial internet of things environment: A comparative study. Future Internet 11, 3 (2019), 66.
[71]
Ricardo Jardim-Goncalves, Keith Popplewell, and Antonio Grilo. 2012. Sustainable interoperability: The future of internet-based industrial enterprises. Comput. Industry 63, 8 (2012), 731–738.
[72]
Pouya Kamalinejad, Chinmaya Mahapatra, Zhengguo Sheng, Shahriar Mirabbasi, Victor C. M. Leung, and Yong Liang Guan. 2015. Wireless energy harvesting for the internet of things. IEEE Commun. Mag. 53, 6 (2015), 102–108.
[73]
Abhishek Khanna and Sanmeet Kaur. 2019. Evolution of internet of things (IoT) and its significant impact in the field of precision agriculture. Comput. Electr. Agric. 157 (2019), 218–231.
[74]
Jaeho Kim, Jaeseok Yun, Sung-Chan Choi, Dale N. Seed, Guang Lu, Martin Bauer, Adel Al-Hezmi, Konrad Campowsky, and Jaeseung Song. 2016. Standard-based IoT platforms interworking: Implementation, experiences, and lessons learned. IEEE Commun. Mag. 54, 7 (2016), 48–54.
[75]
Niklas Kolbe, Sylvain Kubler, Jérémy Robert, Yves Le Traon, and Arkady Zaslavsky. 2017. Towards semantic interoperability in an open IoT ecosystem for connected vehicle services. In Proceedings of the Global Internet of Things Summit (GIoTS’17). IEEE, 1–5.
[76]
D. Praveen Kumar, Tarachand Amgoth, and Chandra Sekhara Rao Annavarapu. 2019. Machine learning algorithms for wireless sensor networks: A survey. Info. Fusion 49 (2019), 1–25.
[77]
Eftychia Lakka, Nikolaos E. Petroulakis, George Hatzivasilis, Othonas Soultatos, Manolis Michalodimitrakis, Urszula Rak, Karolina Waledzik, Darko Anicic, and Vivek Kulkarni. 2019. End-to-end semantic interoperability mechanisms for iot. In Proceedings of the IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD’19). IEEE, 1–6.
[78]
Gabriel da Silva Serapião Leal, Wided Guedria, and Hervé Panetto. 2019. An ontology for interoperability assessment: A systemic approach. J. Industr. Info. Integr. 16 (2019), 100100.
[79]
Chao-Hsien Lee, Yu-Wei Chang, Chi-Cheng Chuang, and Ying Hsun Lai. 2016. Interoperability enhancement for internet of things protocols based on software-defined network. In Proceedings of the IEEE 5th Global Conference on Consumer Electronics. IEEE, 1–2.
[80]
Francesco Lelli. 2019. Interoperability of the time of Industry 4.0 and the internet of things. Future Internet 11, 2 (2019), 36.
[81]
Luca Leonardi, Filippo Battaglia, and Lucia Lo Bello. 2019. RT-LoRa: A medium access strategy to support real-time flows over LoRa-based networks for industrial IoT applications. IEEE Internet Things J. 6, 6 (2019), 10812–10823. DOI:https://doi.org/10.1109/JIOT.2019.2942776
[82]
Christian Lerche, Klaus Hartke, and Matthias Kovatsch. 2012. Industry adoption of the internet of things: A constrained application protocol survey. In Proceedings of the IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA’12). IEEE, 1–6.
[83]
Khaled B. Letaief, Wei Chen, Yuanming Shi, Jun Zhang, and Ying-Jun Angela Zhang. 2019. The roadmap to 6G: AI empowered wireless networks. IEEE Commun. Mag. 57, 8 (2019), 84–90.
[84]
Shancang Li, Li Da Xu, and Shanshan Zhao. 2018. 5G Internet of things: A survey. J. Industr. Inform. Integr. 10 (2018), 1–9.
[85]
W. Li, G. Tropea, A. Abid, A. Detti, and F. Le Gall. 2019. Review of standard ontologies for the web of things. In Proceedings of the Global IoT Summit (GIoTS’19). 1–6.
[86]
J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao. 2017. A survey on internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J. 4, 5 (Oct. 2017), 1125–1142. https://doi.org/10.1109/JIOT.2017.2683200
[87]
Shi-Wan Lin, Bradford Miller, Jacques Durand, Graham Bleakley, Amine Chigani, Robert Martin, Brett Murphy, and Mark Crawford. 2017. The industrial internet of things volume G1: Reference architecture. Industr. Internet Consort. (2017), 10–46.
[88]
Meirong Liu, Teemu Leppänen, Erkki Harjula, Zhonghong Ou, Archana Ramalingam, Mika Ylianttila, and Timo Ojala. 2013. Distributed resource directory architecture in machine-to-machine communications. In Proceedings of the IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob’13). IEEE, 319–324.
[89]
G. Lohmann. 2011. Technical White Paper: Wireless Technology, WirelessHART. Pepperl+Fuchs, Berlin.
[90]
Yang Lu. 2017. Industry 4.0: A survey on technologies, applications and open research issues. J. Industr. Info. Integr. 6 (2017), 1–10.
[91]
Nurul Huda Mahmood, Hirley Alves, Onel Alcaraz López, Mohammad Shehab, Diana P. Moya Osorio, and Matti Latva-Aho. 2020. Six key features of machine type communication in 6G. In Proceedings of the 2nd 6G Wireless Summit (6G SUMMIT’20). IEEE, 1–5.
[92]
D. Manzaroli, L. Roffia, T. Salmon Cinotti, E. Ovaska, P. Azzoni, V. Nannini, and S. Mattarozzi. 2010. Smart-M3 and OSGi: The interoperability platform. In Proceedings of the IEEE Symposium on Computers and Communications. 1053–1058.
[93]
Arooj Masood, Demeke Shumeye Lakew, and Sungrae Cho. 2020. Security and privacy challenges in connected vehicular cloud computing. IEEE Commun. Surveys Tutor. 22, 4 (2020), 2725–2764.
[94]
Gergely Mezei, Ferenc A. Somogyi, and Károly Farkas. 2018. The dynamic sensor data description and data format conversion language. In Proceedings of the 13th International Conference on Software Technologies (ICSOFT’18). 372–380.
[95]
Mithun Mukherjee, Suman Kumar, Mohammad Shojafar, Qi Zhang, and Constandinos X. Mavromoustakis. 2019. Joint task offloading and resource allocation for delay-sensitive fog networks. In Proceedings of the IEEE International Conference on Communications (ICC’19). IEEE, 1–7.
[96]
Behailu Negash, Tomi Westerlund, and Hannu Tenhunen. 2019. Towards an interoperable internet of things through a web of virtual things at the Fog layer. Future Gen. Comput. Syst. 91 (2019), 96–107.
[97]
Mahda Noura, Mohammed Atiquzzaman, and Martin Gaedke. 2019. Interoperability in internet of things: Taxonomies and open challenges. Mobile Netw. Appl. 24, 3 (2019), 796–809.
[98]
Aris M. Ouksel and Amit Sheth. 1999. Semantic interoperability in global information systems. ACM SIGMOD Rec. 28, 1 (1999), 5–12.
[99]
Maria Rita Palattella, Nicola Accettura, Xavier Vilajosana, Thomas Watteyne, Luigi Alfredo Grieco, Gennaro Boggia, and Mischa Dohler. 2012. Standardized protocol stack for the internet of (important) things. IEEE Commun. Surveys Tutor. 15, 3 (2012), 1389–1406.
[100]
Nisha Panwar, Shantanu Sharma, and Awadhesh Kumar Singh. 2016. A survey on 5G: The next generation of mobile communication. Phys. Commun. 18 (2016), 64–84.
[101]
Pankesh Patel, Muhammad Intizar Ali, and Amit Sheth. 2018. From raw data to smart manufacturing: AI and semantic web of things for Industry 4.0. IEEE Intell. Syst. 33, 4 (2018), 79–86.
[102]
N. Pathak, A. Mukherjee, and S. Misra. 2021. AerialBlocks: Blockchain-enabled UAV virtualization for industrial IoT. IEEE Internet Things Mag. (2021), 1–6. https://doi.org/10.1109/IOTM.0011.1900093
[103]
Gianfranco Pedone and István Mezgár. 2018. Model similarity evidence and interoperability affinity in cloud-ready Industry 4.0 technologies. Comput. Industry 100 (2018), 278–286.
[104]
Carlos Pereira, Antonio Pinto, Ana Aguiar, Pedro Rocha, Fernando Santiago, and Jorge Sousa. 2016. IoT interoperability for actuating applications through standardised M2M communications. In Proceedings of the IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM’16). IEEE, 1–6.
[105]
Carlos Pereira, João Rodrigues, António Pinto, Pedro Rocha, Fernando Santiago, Jorge Sousa, and Ana Aguiar. 2016. Smartphones as M2M gateways in smart cities IoT applications. In Proceedings of the 23rd International Conference on Telecommunications (ICT’16). IEEE, 1–7.
[106]
Thinagaran Perumal, Abdul Rahman Ramli, and Chui Yew Leong. 2011. Interoperability framework for smart home systems. IEEE Trans. Consum. Electr. 57, 4 (2011), 1607–1611.
[107]
Manas Pradhan, Niranjan Suri, Christoph Fuchs, Trude Hafsoe Bloebaum, and Michal Marks. 2018. Toward an architecture and data model to enable interoperability between federated mission networks and IoT-enabled smart city environments. IEEE Commun. Mag. 56, 10 (2018), 163–169.
[108]
Eko Sakti Pramukantoro, Fariz Andri Bakhtiar, Binariyanto Aji, and Rasidy Pratama. 2018. Middleware for network interoperability in IoT. Proc. Electr. Eng. Comput. Sci. Inform. 5, 5 (2018), 499–502.
[109]
Eko Sakti Pramukantoro, Widhi Yahya, and Fariz Andri Bakhtiar. 2017. Performance evaluation of IoT middleware for syntactical interoperability. In Proceedings of the International Conference on Advanced Computer Science and Information Systems (ICACSIS’17). IEEE, 29–34.
[110]
Partha Pratim Ray, Nishant Thapa, and Dinesh Dash. 2019. Implementation and performance analysis of interoperable and heterogeneous IoT-edge gateway for pervasive wellness care. IEEE Trans. Consum. Electron. 65, 4 (2019), 464–473.
[111]
Mohammad Abdur Razzaque, Marija Milojevic-Jevric, Andrei Palade, and Siobhán Clarke. 2015. Middleware for internet of things: A survey. IEEE Internet Things J. 3, 1 (2015), 70–95.
[112]
Jérémy Robert, Sylvain Kubler, Niklas Kolbe, Alessandro Cerioni, Emmanuel Gastaud, and Kary Främling. 2017. Open IoT ecosystem for enhanced interoperability in smart cities—Example of Métropole de Lyon. Sensors 17, 12 (2017), 2849.
[113]
Tingwen Ruan, Zheng Jun Chew, and Meiling Zhu. 2017. Energy-aware approaches for energy harvesting powered wireless sensor nodes. IEEE Sensors J. 17, 7 (2017), 2165–2173.
[114]
M. Saad, J. Spaulding, L. Njilla, C. Kamhoua, S. Shetty, D. Nyang, and D. Mohaisen. 2020. Exploring the attack surface of blockchain: A comprehensive survey. IEEE Commun. Surveys Tutor. 22, 3 (2020), 1977–2008.
[115]
Dipak K. Sah and Tarachand Amgoth. 2020. Renewable energy harvesting schemes in wireless sensor networks: A Survey. Info. Fusion 63 (2020), 223–247.
[116]
Nico Saputro, Kemal Akkaya, and Samet Tonyali. 2016. Addressing network interoperability in hybrid IEEE 802.11 s/LTE smart grid communications. In Proceedings of the IEEE 41st Conference on Local Computer Networks (LCN’16). IEEE, 623–626.
[117]
Indranil Sarkar, Mainak Adhikari, Neeraj Kumar, and Sanjay Kumar. 2021. Dynamic task placement for deadline-aware IoT applications in federated fog networks. IEEE Internet Things J. (2021), 1. DOI:https://doi.org/10.1109/JIOT.2021.3088227
[118]
Kamran Sartipi and Azin Dehmoobad. 2008. Cross-domain information and service interoperability. In Proceedings of the 10th International Conference on Information Integration and Web-based Applications and Services. 25–32.
[119]
Michael Schneider, Benjamin Hippchen, Sebastian Abeck, Michael Jacoby, and Reinhard Herzog. 2018. Enabling IoT platform interoperability using a systematic development approach by example. In Proceedings of the Global Internet of Things Summit (GIoTS’18). IEEE, 1–6.
[120]
Karsten Schweichhart. 2016. Reference architectural model industrie 4.0 (RAMI 4.0). Retrieved from https://www.plattform-i40.
[121]
Cheena Sharma and Naveen Kumar Gondhi. 2018. Communication protocol stack for constrained IoT systems. In Proceedings of the 3rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU’18). IEEE, 1–6.
[122]
Raul Schmidlin Fajardo Silva, Jürgen Hesser, and Reinhard Manner. 2011. Contract specification for hardware interoperability testing and fault analysis. IEEE Trans. Reliabil. 60, 1 (2011), 351–362.
[123]
Soraya Sinche, Duarte Raposo, Ngombo Armando, André Rodrigues, Fernando Boavida, Vasco Pereira, and Jorge Sá Silva. 2020. A survey of IoT management protocols and frameworks. IEEE Commun. Surveys Tutor. 22, 2 (2020), 1168–1190.
[124]
Emiliano Sisinni, Abusayeed Saifullah, Song Han, Ulf Jennehag, and Mikael Gidlund. 2018. Industrial internet of things: Challenges, opportunities, and directions. IEEE Trans. Industr. Inform. 14, 11 (2018), 4724–4734.
[125]
Ioan-Valentin Sita and Petru Dobra. 2014. KNX building automations interaction with city resources management system. Procedia Technol. 12 (2014), 212–219.
[126]
Petros Spachos and Konstantinos Plataniotis. 2020. BLE Beacons in the Smart City: Applications, Challenges, and Research Opportunities. IEEE Internet Things Mag. 3, 1 (2020), 14–18.
[127]
S. Suwanmanee, D. Benslimane, and P. Thiran. 2005. OWL-based approach for semantic interoperability. In Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05), Vol. 1. 145–150.
[128]
Tian Tan, Kainan Chen, Ye Jiang, Qiuqiong Lin, Liqiang Yuan, and Zhengming Zhao. 2020. A bidirectional wireless power transfer system control strategy independent of real-time wireless communication. IEEE Trans. Industry Appl. 56, 2 (2020), 1587–1598. DOI:https://doi.org/10.1109/TIA.2019.2961311
[129]
Andreas Tolk and James A. Muguira. 2003. The levels of conceptual interoperability model. In Proceedings of the Fall Simulation Interoperability Workshop, Vol. 7. Citeseer, 1–11.
[130]
Bao Q. Tran. 2017. Systems and methods for providing interoperability among healthcare devices. U.S. Patent 9,820,658.
[131]
Arthur E. Treiber. 1981. Interoperability through effective information exchange standards. J. Syst. Softw. 2, 4 (1981), 337–350.
[132]
Stefano Valtolina, Luca Ferrari, and Marco Mesiti. 2019. Ontology-based consistent specification of sensor data acquisition plans in cross-domain IoT platforms. IEEE Access 7 (2019), 176141–176169.
[133]
Hans van der Veer and Anthony Wiles. 2018. ETSI white paper no. 3: Achieving technical interoperability—The ETSI approach. European Telecommunications Standards Institue (ETSI): Sophia Antipolis, France.
[134]
Albert Van Zelst, Vincent K. Jones, and D. J. Richard van Nee. 2009. Modified preamble structure for IEEE 802.11 a extensions to allow for coexistence and interoperability between 802.11 a devices and higher data rate, MIMO or otherwise extended devices. U.S. Patent 7,599,332.
[135]
Harsha Vasudev, Varad Deshpande, Debasis Das, and Sajal K. Das. 2020. A lightweight mutual authentication protocol for V2V communication in internet of vehicles. IEEE Trans. Vehic. Technol. 69, 6 (2020), 6709–6717. DOI:https://doi.org/10.1109/TVT.2020.2986585
[136]
A. Broring, A. Zappa, O. Vermesan, K. Framling, Arkady Zaslavsky, R. Gonzalez-Usach, P. Szmeja, C. E. Palau, M. Jacoby, I. Podnar Zarko and others. 2018. Advancing IoT platforms interoperability.
[137]
Wattana Viriyasitavat, Li Da Xu, Zhuming Bi, and Danupol Hoonsopon. 2019. Blockchain technology for applications in internet of things-mapping from system design perspective. IEEE Internet Things J. 6, 5 (2019), 8155–8168.
[138]
Johannes Vrana. 2020. NDE 4.0: The Fourth Revolution in Non-Destructive Evaluation: Digital Twin, Semantics, Interfaces, Networking, Feedback, New Markets and Integration into the Industrial Internet of Things. arXiv preprint arXiv:2004.05193.
[139]
Jiafu Wan, Iztok Humar, and Daqiang Zhang. 2016. Industrial IoT Technologies and Applications. Springer.
[140]
Li-e Wang, Yan Bai, Quan Jiang, Victor C. M. Leung, Wei Cai, and Xianxian Li. 2021. Beh-raft-chain: A behavior-based fast blockchain protocol for complex networks. IEEE Trans. Netw. Sci. Eng. 8, 2 (2021), 1154–1166. DOI:https://doi.org/10.1109/TNSE.2020.2984490
[141]
Wenbo Wang, Stefan L. Capitaneanu, Dana Marinca, and Elena-Simona Lohan. 2019. Comparative analysis of channel models for industrial IoT wireless communication. IEEE Access 7 (2019), 91627–91640.
[142]
Yujue Wang. 2020. Enhancing interoperability for IoT-based smart manufacturing: An analytical study of interoperability issues and case study.
[143]
Peter Wegner. 1996. Interoperability. ACM Comput. Surveys 28, 1 (1996), 285–287.
[144]
Michael Weyrich and Christof Ebert. 2015. Reference architectures for the internet of things. IEEE Softw. 33, 1 (2015), 112–116.
[145]
Zhipeng Wu, Zhaozong Meng, and John Gray. 2017. IoT-based techniques for online M2M-interactive itemized data registration and offline information traceability in a digital manufacturing system. IEEE Trans. Industr. Inform. 13, 5 (2017), 2397–2405.
[146]
Guangyi Xiao, Jingzhi Guo, Li Da Xu, and Zhiguo Gong. 2014. User interoperability with heterogeneous IoT devices through transformation. IEEE Trans. Industr. Inform. 10, 2 (2014), 1486–1496.
[147]
D. Xie, S. Ying, X. Li, J. Yao, and B. Xiao. 2007. A resource description framework for service. In Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing. 3351–3354.
[148]
Diana Yacchirema, Andreu BelsaPellicer, Carlos Palau, and Manuel Esteve. 2018. Onem2m-based-interworking architecture for heterogeneous devices interoperability in IoT. In Proceedings of the IEEE Conference on Standards for Communications and Networking (CSCN’18). IEEE, 1–6.
[149]
Shuo Yang and Ran Wei. 2018. Tabdoc approach: An information fusion method to implement semantic interoperability between IoT devices and users. IEEE Internet Things J. 6, 2 (2018), 1972–1986.
[150]
Ivana Podnar Žarko, Szymon Mueller, Marcin Płociennik, Tomasz Rajtar, Michael Jacoby, Matteo Pardi, Gianluca Insolvibile, Vasileios Glykantzis, Aleksandar Antonić, Mario Kušek et al. 2019. The symbIoTe solution for semantic and syntactic interoperability of cloud-based IoT platforms. In Proceedings of the Global IoT Summit (GIoTS’19). IEEE, 1–6.
[151]
Abe Zeid, Sarvesh Sundaram, Mohsen Moghaddam, Sagar Kamarthi, and Tucker Marion. 2019. Interoperability in smart manufacturing: Research challenges. Machines 7, 2 (2019), 21.
[152]
František Zezulka, P. Marcon, Zdenek Bradac, Jakub Arm, T. Benesl, and Ivo Vesely. 2018. Communication systems for Industry 4.0 and the IIoT. IFAC-PapersOnLine 51, 6 (2018), 150–155.
[153]
Zhizhong Zhang, Chuan Wu, and David W. L. Cheung. 2013. A survey on cloud interoperability: Taxonomies, standards, and practice. ACM SIGMETRICS Perform. Eval. Rev. 40, 4 (2013), 13–22.

Cited By

View all
  • (2025)Mental Health and Moral Education in the Digital AgeInternational Journal of Web-Based Learning and Teaching Technologies10.4018/IJWLTT.36786820:1(1-20)Online publication date: 23-Jan-2025
  • (2025)Cognitive Computing and Machine Intelligence in Fog–Cloud Infrastructure for Industry 5.0IEEE Consumer Electronics Magazine10.1109/MCE.2024.340510914:2(20-25)Online publication date: Mar-2025
  • (2025)TASIS: A typology of architectural strategies for interoperability in software-intensive systemsComputer Standards & Interfaces10.1016/j.csi.2024.10387491(103874)Online publication date: Jan-2025
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 55, Issue 1
January 2023
860 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/3492451
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 November 2021
Accepted: 01 August 2021
Revised: 01 June 2021
Received: 01 October 2020
Published in CSUR Volume 55, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Industrial internet of things
  2. interoperability
  3. machine-to-machine
  4. standards
  5. protocols

Qualifiers

  • Survey
  • Refereed

Funding Sources

  • DST (SERB)
  • Government of India
  • UoH-IoE by MHRD

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1,192
  • Downloads (Last 6 weeks)126
Reflects downloads up to 02 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Mental Health and Moral Education in the Digital AgeInternational Journal of Web-Based Learning and Teaching Technologies10.4018/IJWLTT.36786820:1(1-20)Online publication date: 23-Jan-2025
  • (2025)Cognitive Computing and Machine Intelligence in Fog–Cloud Infrastructure for Industry 5.0IEEE Consumer Electronics Magazine10.1109/MCE.2024.340510914:2(20-25)Online publication date: Mar-2025
  • (2025)TASIS: A typology of architectural strategies for interoperability in software-intensive systemsComputer Standards & Interfaces10.1016/j.csi.2024.10387491(103874)Online publication date: Jan-2025
  • (2025)A secure and lightweight authentication scheme for digital forensics in industrial internet of thingsAlexandria Engineering Journal10.1016/j.aej.2025.02.059121(117-127)Online publication date: May-2025
  • (2024)Cloud Computing Paradigms with the Internet of Things for Automating Business ProcessesAdvancements in Intelligent Process Automation10.4018/979-8-3693-5380-6.ch011(263-294)Online publication date: 20-Sep-2024
  • (2024)Cybersecurity Strategies for Smart GridsSmart and Agile Cybersecurity for IoT and IIoT Environments10.4018/979-8-3693-3451-5.ch013(280-305)Online publication date: 30-Jun-2024
  • (2024)User Authentication in the IoT and IIoT EnvironmentSmart and Agile Cybersecurity for IoT and IIoT Environments10.4018/979-8-3693-3451-5.ch008(169-194)Online publication date: 30-Jun-2024
  • (2024)Internet of Things-Based Service-Oriented Architecture for Industrial ApplicationsEmerging Engineering Technologies and Industrial Applications10.4018/979-8-3693-1335-0.ch013(269-294)Online publication date: 6-May-2024
  • (2024)IoT-Driven Transformation of Circular Economy Efficiency: An OverviewMathematical and Computational Applications10.3390/mca2904004929:4(49)Online publication date: 28-Jun-2024
  • (2024)Comprehensive Review and Future Research Directions on ICT StandardisationInformation10.3390/info1511069115:11(691)Online publication date: 2-Nov-2024
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media