skip to main content
10.1145/3485730.3494037acmconferencesArticle/Chapter ViewAbstractPublication PagessensysConference Proceedingsconference-collections
research-article

A Machine Learning Approach for Abnormality Detection in Blood Vessels via Mobile Nanosensors

Published:15 November 2021Publication History

ABSTRACT

Early detection of diseases in the human body is of utmost importance for the diagnosis and medical treatment of patients. Supported by recent advancements in nanotechnology, diseases may be detected by patrolling nanosensors, even before symptoms appear. This paper explores the detection capabilities of nanosensors flowing through the human circulatory system (HCS). We model the HCS through a Markov chain and propose the use of machine learning (ML) methods to learn the corresponding transition probabilities. Doing so, we propose a methodology to develop an early detection mechanism of quorum sensing (QS) molecules released by bacteria. Simulation results indicate the suitability of our machine learning approach as a basis for in-body precision medicine.

References

  1. [n.d.]. Decision Trees - MATLAB & Simulink. https://www.mathworks.com/help/stats/decision-trees.htmlGoogle ScholarGoogle Scholar
  2. [n.d.]. Train models to classify data using supervised machine learning - MATLAB. https://www.mathworks.com/help/stats/classificationlearner-app.htmlGoogle ScholarGoogle Scholar
  3. Ian F. Akyildiz, Maysam Ghovanloo, Ulkuhan Guler, Tevhide Ozkaya-Ahmadov, A. Fatih Sarioglu, and Bige D. Unluturk. 2020. PANACEA: An Internet of Bio-NanoThings Application for Early Detection and Mitigation of Infectious Diseases. IEEE Access 8 (Jan. 2020), 140512--140523. https://doi.org/10.1109/access.2020.3012139Google ScholarGoogle Scholar
  4. Ian F. Akyildiz, Massimiliano Pierobon, and Sasitharan Balasubramaniam. 2019. Moving forward with molecular communication: from theory to human health applications [point of view]. Proc. IEEE 107, 5 (May 2019), 858--865. https://doi.org/10.1109/jproc.2019.2913890Google ScholarGoogle ScholarCross RefCross Ref
  5. Ian F. Akyildiz, Massimiliano Pierobon, S. Balasubramaniam, and Y. Koucheryavy. 2015. The Internet of Bio-Nano Things. IEEE Communications Magazine (COM-MAG) 53, 3 (March 2015), 32--40. https://doi.org/10.1109/MCOM.2015.7060516Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Helen L. Barr, Nigel Halliday, Miguel Cámara, David A. Barrett, Paul Williams, Douglas L. Forrester, Rebecca Simms, Alan R. Smyth, David Honeybourne, Joanna L. Whitehouse, Edward F. Nash, Jane Dewar, Andrew Clayton, Alan J. Knox, and Andrew W. Fogarty. 2015. Pseudomonas aeruginosaquorum sensing molecules correlate with clinical status in cystic fibrosis. European Respiratory Journal 46, 4 (May 2015), 1046--1054. https://doi.org/10.1183/09031936.00225214Google ScholarGoogle ScholarCross RefCross Ref
  7. Matthew Biletic, Filbert H. Juwono, and Lenin Gopal. 2020. Nanonetworks and Molecular Communications for Biomedical Applications. IEEE Potentials 39, 3 (May 2020), 25--30. https://doi.org/10.1109/mpot.2020.2964825Google ScholarGoogle ScholarCross RefCross Ref
  8. Thomas Bos, Wentao Jiang, Jan D'hooge, Marian Verhelst, and Wim Dehaene. 2019. Enabling Ultrasound In-Body Communication: FIR Channel Models and QAM Experiments. IEEE Transactions on Biomedical Circuits and Systems (Feb. 2019), 135--144. https://doi.org/10.1109/TBCAS.2018.2880878Google ScholarGoogle ScholarCross RefCross Ref
  9. Alexandros-Apostolos A. Boulogeorgos, Stylianos E. Trevlakis, Sotiris A. Tegos, Vasilis K. Papanikolaou, and George K. Karagiannidis. 2021. Machine Learning in Nano-Scale Biomedical Engineering. IEEE Transactions on Molecular, Biological and Multi-Scale Communications (T-MBMC) 7, 1 (March 2021), 10--39. https://doi.org/10.1109/tmbmc.2020.3035383Google ScholarGoogle Scholar
  10. Florian Büther, Immo Traupe, and Sebastian Ebers. 2018. Hop Count Routing: A Routing Algorithm for Resource Constrained, Identity-Free Medical Nanonetworks. In 5th ACM International Conference on Nanoscale Computing and Communication (NANOCOM 2018). ACM, Reykjavík, Iceland. https://doi.org/10.1145/3233188.3233193Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Uche A. K. Chude-Okonkwo, Reza Malekian, B. T. Maharaj, and Athanasios V. Vasilakos. 2017. Molecular Communication and Nanonetwork for Targeted Drug Delivery: A Survey. IEEE Communications Surveys & Tutorials 19, 4 (2017), 3046--3096. https://doi.org/10.1109/comst.2017.2705740Google ScholarGoogle ScholarCross RefCross Ref
  12. Falko Dressler and Stefan Fischer. 2015. Connecting In-Body Nano Communication with Body Area Networks: Challenges and Opportunities of the Internet of Nano Things. Elsevier Nano Communication Networks 6 (June 2015), 29--38. https://doi.org/10.1016/j.nancom.2015.01.006Google ScholarGoogle Scholar
  13. Florian-Lennert Adrian Flau, Regine Wendt, and Stefan Fischer. 2021. DNA-Based Molecular Communication as a Paradigm for Multi-Parameter Detection of Diseases. In 8th ACM International Conference on Nanoscale Computing and Communication (NANOCOM 2021). ACM, Virtual Conference.Google ScholarGoogle Scholar
  14. Constantine Gatsonis, James S. Hodges, Robert E. Kaas, and Nozer D. Singpurwalla. 2012. Case Studies in Bayesian Statistics. Vol. II. Springer Science & Business Media.Google ScholarGoogle Scholar
  15. Regine Geyer, Marc Stelzner, Florian Büther, and Sebastian Ebers. 2018. BloodVoyagerS: Simulation of the Work Environment of Medical Nanobots. In 5th ACM International Conference on Nanoscale Computing and Communication (NANOCOM 2018). ACM, Reykjavík, Iceland, 5:1-5:6. https://doi.org/10.1145/3233188.3233196Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Arthur C. Guyton and Michael. E. Hall. 2015. Guyton and Hall Textbook of Medical Physiology (14 ed.). Elsevier.Google ScholarGoogle Scholar
  17. Sophia L. Kalpazidou. 2006. Cycle Representations of Markov Processes. Springer. https://doi.org/10.1007/0-387-36081-6Google ScholarGoogle Scholar
  18. Ladan Khaloopour, Mahtab Mirmohseni, and Masoumeh Nasiri-Kenari. 2021. Theoretical Concept Study of Cooperative Abnormality Detection and Localization in Fluidic-Medium Molecular Communication. IEEE Sensors Journal 21, 15 (Aug. 2021), 17118--17130. https://doi.org/10.1109/jsen.2021.3081815Google ScholarGoogle ScholarCross RefCross Ref
  19. Anjali Kumari, Patrizia Pasini, and Sylvia Daunert. 2008. Detection of bacterial quorum sensing N-acyl homoserine lactones in clinical samples. Analytical and Bioanalytical Chemistry 391, 5 (April 2008), 1619--1627. https://doi.org/10.1007/s00216-008-2002-3Google ScholarGoogle ScholarCross RefCross Ref
  20. Anjali Kumari, Patrizia Pasini, Sapna K. Deo, Deborah Flomenhoft, Harohalli Shashidhar, and Sylvia Daunert. 2006. Biosensing Systems for the Detection of Bacterial Quorum Signaling Molecules. Analytical Chemistry 78, 22 (Nov. 2006), 7603--7609. https://doi.org/10.1021/ac061421nGoogle ScholarGoogle ScholarCross RefCross Ref
  21. Reza Mosayebi, Arman Ahmadzadeh, Wayan Wicke, Vahid Jamali, Robert Schober, and Masoumeh Nasiri-Kenari. 2019. Early Cancer Detection in Blood Vessels Using Mobile Nanosensors. IEEE Transactions on NanoBioscience 18, 4 (Oct. 2019), 103--116. https://doi.org/10.1109/tnb.2018.2885463Google ScholarGoogle ScholarCross RefCross Ref
  22. Giuseppe Piro, Pietro Bia, Gennaro Boggia, Diego Caratelli, Luigi Alfredo Grieco, and Luciano Mescia. 2016. Terahertz electromagnetic field propagation in human tissues: A study on communication capabilities. Nano Communication Networks 10 (2016), 51--59.Google ScholarGoogle ScholarCross RefCross Ref
  23. Giuseppe Enrico Santagati, Neil Dave, and Tommaso Melodia. 2020. Design and Performance Evaluation of an Implantable Ultrasonic Networking Platform for the Internet of Medical Things. IEEE/ACM Transactions on Networking (TON) 28, 1 (2020), 29--42. https://doi.org/10.1109/TNET.2019.2949805Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Shreyas Sen, Shovan Maity, and Debayan Das. 2020. The body is the network: To safeguard sensitive data, turn flesh and tissue into a secure wireless channel. IEEE Spectrum 57, 12 (Dec. 2020), 44--49. https://doi.org/10.1109/mspec.2020.9271808Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Jennifer Simonjan, Josep Miquel Jornet, Ian F Akyildiz, and Bernhard Rinner. 2018. Nano-cameras: A key enabling technology for the Internet of multimedia nano-things. In Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication. 1--6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Jennifer Simonjan, Bige D. Unluturk, and Ian F. Akyildiz. 2021. In-body Bionanosensor Localization for Anomaly Detection via Inertial Positioningand THz Backscattering Communication. eess.SY 2108.13747. arXiv.Google ScholarGoogle Scholar
  27. Christian A. Soldner, Eileen Socher, Vahid Jamali, Wayan Wicke, Arman Ahmadzadeh, Hans-Georg Breitinger, Andreas Burkovski, Kathrin Castiglione, Robert Schober, and Heinrich Sticht. 2020. A Survey of Biological Building Blocks for Synthetic Molecular Communication Systems. IEEE Communications Surveys & Tutorials 22, 4 (2020), 2765--2800. https://doi.org/10.1109/comst.2020.3008819Google ScholarGoogle ScholarCross RefCross Ref
  28. Marc Stelzner and Immo Traupe. 2019. FCNN: Location Awareness Based on a Lightweight Hop Count Routing Body Coordinates Concept. In 6th ACM International Conference on Nanoscale Computing and Communication (NANOCOM 2019). ACM, Dublin, Ireland. https://doi.org/10.1145/3345312.3345493Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Renat A. Sultanov, Dennis Guster, Brent Engelbrekt, and Richard Blankenbecler. 2008. 3D Computer Simulations of Pulsatile Human Blood Flows in Vessels and in the Aortic Arch: Investigation of Non-Newtonian Characteristics of Human Blood. In 2008 11th IEEE International Conference on Computational Science and Engineering. IEEE, Sao Paulo, Brazil. https://doi.org/10.1109/cse.2008.65Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Jorge Torres Gómez, Regine Wendt, Anke Kuestner, Ketki Pitke, Lukas Stratmann, and Falko Dressler. 2021. Markov Model for the Flow of Nanobots in the Human Circulatory System. In 8th ACM International Conference on Nanoscale Computing and Communication (NANOCOM 2021). ACM, Virtual Conference. https://doi.org/10.1145/3477206.3477477Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Gerard J. Tortora and Bryan H. Derrickson. 2017. Principles of Anatomy and Physiology (15 ed.). Wiley.Google ScholarGoogle Scholar
  32. Neeraj Varshney, Adarsh Patel, Yansha Deng, Werner Haselmayr, Pramod Varshney, and Arumugam Nallanathan. 2018. Abnormality Detection Inside Blood Vessels With Mobile Nanomachines. IEEE Transactions on Molecular, Biological and Multi-Scale Communications (T-MBMC) 4, 3 (Sept. 2018), 189--194. https://doi.org/10.1109/tmbmc.2019.2913399Google ScholarGoogle Scholar

Index Terms

  1. A Machine Learning Approach for Abnormality Detection in Blood Vessels via Mobile Nanosensors

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SenSys '21: Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems
          November 2021
          686 pages
          ISBN:9781450390972
          DOI:10.1145/3485730

          Copyright © 2021 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 15 November 2021

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          SenSys '21 Paper Acceptance Rate25of139submissions,18%Overall Acceptance Rate174of867submissions,20%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader