skip to main content
10.1145/3485983.3494840acmconferencesArticle/Chapter ViewAbstractPublication PagesconextConference Proceedingsconference-collections
research-article

A unified congestion control framework for diverse application preferences and network conditions

Published:03 December 2021Publication History

ABSTRACT

With the increase of diversity in application needs and networks, existing congestion control algorithms (CCAs) do not accommodate this complicated reality. Previous classic CCAs are designed for a specific domain with fixed rules, failing to adapt to such diversities. Recently surged learning-based CCAs have great potential in adaptability and flexibility but are not practical due to unsatisfying performance on convergence, fairness, overhead and safety assurance. In this paper, we propose Libra, a unified congestion control framework, which empowers flexibility, adaptability, and practicality, by combining the wisdom of classic and reinforcement learning (RL)-based CCAs. Extensive evaluation of Libra's Linux kernel implementations on both live Internet and emulated networks shows performance improvement under dynamic networks (e.g., 1.2x throughput than Orca on average). At the same time, Libra can flexibly satisfy different application needs, reduce the running overhead by at most 0.92x and perform good fairness and convergence properties, well-fitting our theoretical analysis.

Skip Supplemental Material Section

Supplemental Material

3494840.mp4

mp4

344 MB

References

  1. Soheil Abbasloo, Yang Xu, and H. Jonathan Chao. 2019. C2TCP: A Flexible Cellular TCP to Meet Stringent Delay Requirements. IEEE J. Sel. Areas Commun. 37, 4 (2019), 918--932. Google ScholarGoogle ScholarCross RefCross Ref
  2. Soheil Abbasloo, Chen-Yu Yen, and H. Jonathan Chao. 2020. Classic Meets Modern: a Pragmatic Learning-Based Congestion Control for the Internet. In Proceedings of ACM SIGCOMM, Henning Schulzrinne and Vishal Misra (Eds.). ACM, 632--647. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Soheil Abbasloo, Chen-Yu Yen, and H. Jonathan Chao. 2021. Wanna Make Your TCP Scheme Great for Cellular Networks? Let Machines Do It for You! IEEE J. Sel. Areas Commun. 39, 1 (2021), 265--279. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Mohammad Alizadeh, Albert G. Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010. Data center TCP (DCTCP). In Proceedings of ACM SIGCOMM, Shivkumar Kalyanaraman, Venkata N. Padmanabhan, K. K. Ramakrishnan, Rajeev Shorey, and Geoffrey M. Voelker (Eds.). ACM, 63--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical Delay-Based Congestion Control for the Internet. In Proceedings of USENIX NSDI, Sujata Banerjee and Srinivasan Seshan (Eds.). USENIX Association, 329--342. https://www.usenix.org/conference/nsdi18/presentation/arunGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  6. Lawrence S. Brakmo and Larry L. Peterson. 1995. TCP Vegas: End to End Congestion Avoidance on a Global Internet. IEEE J. Sel. Areas Commun. 13, 8 (1995), 1465--1480. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Lloyd Brown, Ganesh Ananthanarayanan, Ethan Katz-Bassett, Arvind Krishnamurthy, Sylvia Ratnasamy, Michael Schapira, and Scott Shenker. 2020. On the Future of Congestion Control for the Public Internet. In Proceedings of ACM HotNets, Ben Zhao, Heather Zheng, Harsha V. Madhyastha, and Venkat N. Padmanabhan (Eds.). ACM, 30--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and Van Jacobson. 2017. BBR: congestion-based congestion control. Commun. ACM 60, 2 (2017), 58--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Kefan Chen, Danfeng Shan, Xiaohui Luo, Tong Zhang, Yajun Yang, and Fengyuan Ren. 2020. One Rein to Rule Them All: A Framework for Datacenter-to-User Congestion Control. In Proceedings of ACM APNet. ACM, 44--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. V. Chernov. 2019. On Some Approaches to Find Nash Equilibrium in Concave Games. Autom. Remote. Control. 80, 5 (2019), 964--988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Mo Dong, Qingxi Li, Doron Zarchy, Philip Brighten Godfrey, and Michael Schapira. 2015. PCC: Re-architecting Congestion Control for Consistent High Performance. In Proceedings of USENIX NSDI. USENIX Association, 395--408. https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/dongGoogle ScholarGoogle Scholar
  12. Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey, and Michael Schapira. 2018. PCC Vivace: Online-Learning Congestion Control. In Proceedings of USENIX NSDI, Sujata Banerjee and Srinivasan Seshan (Eds.). USENIX Association, 343--356. https://www.usenix.org/conference/nsdi18/presentation/dongGoogle ScholarGoogle Scholar
  13. Salma Emara, Baochun Li, and Yanjiao Chen. 2020. Eagle: Refining Congestion Control by Learning from the Experts. In Proceedings of IEEE INFOCOM. IEEE, 676--685. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Eyal Even-Dar, Yishay Mansour, and Uri Nadav. 2009. On the convergence of regret minimization dynamics in concave games. In Proceedings of ACM STOC, Michael Mitzenmacher (Ed.). ACM, 523--532. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Sally Floyd and Thomas R. Henderson. 1999. The NewReno Modification to TCP's Fast Recovery Algorithm. RFC 2582 (1999), 1--12.Google ScholarGoogle Scholar
  16. Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly high-speed TCP variant. ACM SIGOPS Oper. Syst. Rev. 42, 5 (2008), 64--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. 2018. Deep Reinforcement Learning That Matters. In Proceedings of AAAI, Sheila A. McIlraith and Kilian Q. Weinberger (Eds.). AAAI Press, 3207--3214. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16669Google ScholarGoogle ScholarCross RefCross Ref
  18. Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. 2018. Stable Baselines. https://github.com/hill-a/stable-baselines. (2018).Google ScholarGoogle Scholar
  19. Yannis E. Ioannidis and Eugene Wong. 1987. Query Optimization by Simulated Annealing. In Proceedings of the Association for Computing Machinery Special Interest Group on Management of Data, Umeshwar Dayal and Irving L. Traiger (Eds.). ACM Press, 9--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Nathan Jay, Noga H. Rotman, Brighten Godfrey, Michael Schapira, and Aviv Tamar. 2019. A Deep Reinforcement Learning Perspective on Internet Congestion Control. In Proceedings of PMLR ICML, Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.), Vol. 97. PMLR, 3050--3059. http://proceedings.mlr.press/v97/jay19a.htmlGoogle ScholarGoogle Scholar
  21. Yiming Kong, Hui Zang, and Xiaoli Ma. 2018. Improving TCP Congestion Control with Machine Intelligence. In Proceedings of the 2018 Workshop on Network Meets AI & ML, NetAI@SIGCOMM. ACM, 60--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Wassel, Xian Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld, Michael Ryan, David Wetherall, and Amin Vahdat. 2020. Swift: Delay is Simple and Effective for Congestion Control in the Datacenter. In Proceedings of ACM SIGCOMM, Henning Schulzrinne and Vishal Misra (Eds.). ACM, 514--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Xu Li, Feilong Tang, Jiacheng Liu, Laurence T. Yang, Luoyi Fu, and Long Chen. 2021. AUTO: Adaptive Congestion Control Based on Multi-Objective Reinforcement Learning for the Satellite-Ground Integrated Network. In Proceedings of USENIX ATC, Irina Calciu and Geoff Kuenning (Eds.). USENIX Association, 611--624. https://www.usenix.org/conference/atc21/presentation/li-xuGoogle ScholarGoogle Scholar
  24. Yuxi Li. 2017. Deep Reinforcement Learning: An Overview. CoRR abs/1701.07274 (2017). arXiv:1701.07274 http://arxiv.org/abs/1701.07274Google ScholarGoogle Scholar
  25. Tong Meng, Neta Rozen Schiff, Philip Brighten Godfrey, and Michael Schapira. 2020. PCC Proteus: Scavenger Transport And Beyond. In Proceedings of ACM SIGCOMM, Henning Schulzrinne and Vishal Misra (Eds.). ACM, 615--631. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein, James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate Record-and-Replay for HTTP. In Proceedings of USENIX ATC, Shan Lu and Erik Riedel (Eds.). USENIX Association, 417--429. https://www.usenix.org/conference/atc15/technical-session/presentation/netravaliGoogle ScholarGoogle Scholar
  27. Kathleen M. Nichols and Van Jacobson. 2012. Controlling queue delay. Commun. ACM 55, 7 (2012), 42--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Noga H. Rotman, Michael Schapira, and Aviv Tamar. 2020. Online Safety Assurance for Learning-Augmented Systems. In Proceedings of ACM HotNets, Ben Zhao, Heather Zheng, Harsha V. Madhyastha, and Venkat N. Padmanabhan (Eds.). ACM, 88--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Alessio Sacco, Matteo Flocco, Flavio Esposito, and Guido Marchetto. 2021. Owl: Congestion Control with Partially Invisible Networks via Reinforcement Learning. In Proceedings of IEEE INFOCOM. IEEE, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017). arXiv:1707.06347 http://arxiv.org/abs/1707.06347Google ScholarGoogle Scholar
  31. Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker, and Hari Balakrishnan. 2014. An experimental study of the learnability of congestion control. In Proceedings of ACM SIGCOMM, Fabián E. Bustamante, Y. Charlie Hu, Arvind Krishnamurthy, and Sylvia Ratnasamy (Eds.). ACM, 479--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Kun Tan, Jingmin Song, Qian Zhang, and Murari Sridharan. 2006. A Compound TCP Approach for High-Speed and Long Distance Networks. In Proceedings of IEEE INFOCOM. IEEE. Google ScholarGoogle ScholarCross RefCross Ref
  33. Keith Winstein and Hari Balakrishnan. 2013. TCP ex machina: computergenerated congestion control. In Proceedings of ACM SIGCOMM, Dah Ming Chiu, Jia Wang, Paul Barford, and Srinivasan Seshan (Eds.). ACM, 123--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Stochastic Forecasts Achieve High Throughput and Low Delay over Cellular Networks. In Proceedings of USENIX NSDI, Nick Feamster and Jeffrey C. Mogul (Eds.). USENIX Association, 459--471. https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/winsteinGoogle ScholarGoogle Scholar
  35. Yaxiong Xie, Fan Yi, and Kyle Jamieson. 2020. Pbe-CC: Congestion Control via Endpoint-Centric, Physical-Layer Bandwidth Measurements. In Proceedings of ACM SIGCOMM, Henning Schulzrinne and Vishal Misra (Eds.). ACM, 451--464. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Lisong Xu, Khaled Harfoush, and Injong Rhee. 2004. Binary Increase Congestion Control (BIC) for Fast Long-Distance Networks. In Proceedings of IEEE INFOCOM. IEEE, 2514--2524. Google ScholarGoogle ScholarCross RefCross Ref
  37. Zhiyuan Xu, Jian Tang, Chengxiang Yin, Yanzhi Wang, and Guoliang Xue. 2019. Experience-Driven Congestion Control: When Multi-Path TCP Meets Deep Reinforcement Learning. IEEE J. Sel. Areas Commun. 37, 6 (2019), 1325--1336. Google ScholarGoogle ScholarCross RefCross Ref
  38. Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S. Wahby, Philip Alexander Levis, and Keith Winstein. 2018. Pantheon: the training ground for Internet congestion-control research. In Proceedings of USENIX ATC, Haryadi S. Gunawi and Benjamin Reed (Eds.). USENIX Association, 731--743. https://www.usenix.org/conference/atc18/presentation/yan-francisGoogle ScholarGoogle Scholar
  39. Jiancheng Ye, Ka-Cheong Leung, Victor O. K. Li, and Steven H. Low. 2018. Combating Bufferbloat in Multi-Bottleneck Networks: Equilibrium, Stability, and Algorithms. In Proceedings of IEEE INFOCOM. IEEE, 648--656. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian, and Carmelita Görg. 2015. Adaptive Congestion Control for Unpredictable Cellular Networks. In Proceedings of ACM SIGCOMM, Steve Uhlig, Olaf Maennel, Brad Karp, and Jitendra Padhye (Eds.). ACM, 509--522. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Doron Zarchy, Radhika Mittal, Michael Schapira, and Scott Shenker. 2017. An Axiomatic Approach to Congestion Control. In Proceedings of ACM HotNets, Sujata Banerjee, Brad Karp, and Michael Walfish (Eds.). ACM, 115--121. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Gaoxiong Zeng, Wei Bai, Ge Chen, Kai Chen, Dongsu Han, Yibo Zhu, and Lei Cui. 2019. Congestion Control for Cross-Datacenter Networks. In Proceedings of IEEE ICNP. IEEE, 1--12. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A unified congestion control framework for diverse application preferences and network conditions

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CoNEXT '21: Proceedings of the 17th International Conference on emerging Networking EXperiments and Technologies
        December 2021
        507 pages
        ISBN:9781450390989
        DOI:10.1145/3485983
        • General Chairs:
        • Georg Carle,
        • Jörg Ott

        Copyright © 2021 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 3 December 2021

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate198of789submissions,25%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader