skip to main content
10.1145/3486011.3486511acmotherconferencesArticle/Chapter ViewAbstractPublication PagesteemConference Proceedingsconference-collections
research-article

Remote Laboratory for Activating Lecture Hall Teaching and Distance Learning

Published:20 December 2021Publication History

ABSTRACT

This paper presents two remote laboratories (RL), which are used for activating a large cohort in a classical lecture hall as well as in distance learning. These RLs are part of a didactic concept based on the approach of problem-based learning. In problem-oriented exercises, the students plan, implement and check their solutions in remote experiments. The first RL offers eight experiments for the students based on PLC and microcontroller programming, whereas the second RL provides seven demonstrations on task scheduling. The second RL’s unique feature is a horizontal didactic reduction from a calculation process to a task of a crane robot. The RLs are accessed via a self-developed RL management system. The evaluation of the field test shows that students’ motivation has increased and the link between theory and practice has been improved. Furthermore, the students’ exam results have improved. However, students criticize the additional time required for the remote experiments.

References

  1. B. Aktan, Carisa Bohus, L. A. Crowl, and M. Shor. 1996. Distance learning applied to control engineering laboratories. IEEE Transactions on Education 39 (1996).Google ScholarGoogle Scholar
  2. Pavel Beňo and et al.2017. Road to Strengthen of Virtual Infrastructure and Security of Remote Laboratories on Trnava University in Trnava. In International Journal of Online and Biomedical Engineering (iJOE), Vol. 17. https://doi.org/10.3991/ijoe.v16i12.16701Google ScholarGoogle Scholar
  3. T. Machet D. Lowe and T. Kostulski. 2012. Uts remote labs labshare and the sahara architecture. In Using Remote Labs in Education: Two Little Ducks in Remote Experimentation. pp. 403.Google ScholarGoogle Scholar
  4. Juarez Bento da Silva and et al.2020. Block.ino: Remote Lab for Programming Teaching and Learning. In International Journal of Advanced Engineering Research and Science (IJAERS), Vol. 7. https://doi.org/10.22161/ijaers.71.6Google ScholarGoogle Scholar
  5. Luís Gomes and S. Bogosyan. 2009. Current Trends in Remote Laboratories. IEEE Transactions on Industrial Electronics 56 (2009).Google ScholarGoogle Scholar
  6. G. Grüner. 1984. Die didaktische Reduktion als Kernstück der Didaktik. In Didaktische Reduktion und methodische Transformation. J. Kahlke and F. M. Kath.Google ScholarGoogle Scholar
  7. M. Haack and T. N. Jambor. 2018. Lernendenzentrierte aktivierende Lehre in einem Hörsaal mit großen Kohorten. In Diversität und kulturelle Vielfalt, Differenzieren, Individualisieren - oder integrieren?, Die 13. Ingenieurpädagogische Regionaltagung 2018. Ingenieur-Pädagogische Wissenschaftsgesellschaft.Google ScholarGoogle Scholar
  8. M. Haack and Thomas N. Jambor. 2020. Influence of Problem-Based Learning on Student Performance. In IEEE Global Engineering Education Conference (EDUCON). https://doi.org/10.1109/educon45650.2020.9125113Google ScholarGoogle Scholar
  9. M. Haack and Thomas N. Jambor. 2020. Investigation of Variables Related to University Drop-out in Problem-Based Learning. In IEEE Frontiers in Education Conference (FIE). https://doi.org/10.1109/fie44824.2020.9273964Google ScholarGoogle ScholarCross RefCross Ref
  10. M. Haack and T. N. Jambor. 2020. Seamless Learning im problembasierten Flipped Classroom mit einem Remote Lab. Waxmann Verlag GmbH, 101–110. https://doi.org/10.31244/9783830992448Google ScholarGoogle Scholar
  11. M. Haack and Thomas N. Jambor. 2021. Evaluation of a Learner-Centered Activating Learning Situation with Large Cohorts in the University. In IEEE Frontiers in Education Conference (FIE).Google ScholarGoogle ScholarCross RefCross Ref
  12. V. Judson Harward and et al.2008. The ilab shared architecture: A web services infrastructure to build communities of internet accessible laboratories. In Proceedings of the IEEE. vol. 96, no. 6, pp. 931-950.Google ScholarGoogle ScholarCross RefCross Ref
  13. F. Hecklau, R. Orth, F. Kidschun, and S. Tominaj. 2020. Veränderte Kompetenzanforderungen im Rahmen von Digitalisierung und Industrie 4.0. In Wissensmanagement in digitalen Arbeitswelten: Aktuelle Ansätze und Perspektiven. Heisig, P. and Orth, R. and Schönborn, J. M. and Thalmann, S.Google ScholarGoogle Scholar
  14. K. Henke. 2015. GOLDi — Grid of online lab devices Ilmenau: Demonstration of online experimentation. In 2015 3rd Experiment International Conference (exp.at’15). pp. 403.Google ScholarGoogle ScholarCross RefCross Ref
  15. U. Heublein, J. Ebert, C. Hutzsch, S. Isleib, R. König, J. Richter, and A. Woisch. 2017. Zwischen Studienerwartung und Studienwirklichkeit. Deutsches Zentrum für Hochschul- und Wissenschaftsforschung, Hannover.Google ScholarGoogle Scholar
  16. D. Kruse. 2017. Virtualisierung eines verfahrenstechnischen Prozesses als remote Labor für die Aus- und Weiterbildung in Industrie 4.0. In Ruhr-Universität Bochum.Google ScholarGoogle Scholar
  17. D. Kruse and et al.2016. Remote labs in ELLI: Lab experience for every student with two different approaches. In 2016 IEEE Global Engineering Education Conference (EDUCON).Google ScholarGoogle Scholar
  18. Manfred Leisenberg and Madeleine Stepponat. 2019. Internet of Things Remote Labs: Experiences with Data Analysis Experiments for Students Education. In 2019 IEEE Global Engineering Education Conference (EDUCON). https://doi.org/10.1109/EDUCON.2019.8725070Google ScholarGoogle Scholar
  19. M. C. Costa Lobo and et al.2011. Using remote experimentation in a large undergraduate course: Initial findings. In 2011 Frontiers in Education Conference (FIE). https://doi.org/10.1109/FIE.2011.6142913Google ScholarGoogle Scholar
  20. Priscila Cadorin Nicolete and et al.2015. Mobile remote experimentation applied to Basic Education. In 2015 3rd Experiment International Conference (exp.at’15). https://doi.org/10.1109/EXPAT.2015.7463277Google ScholarGoogle Scholar
  21. P. Orduña, P. Bailey, K. DeLong, D. López de Ipiña, and J. García-Zubia. 2014. Towards federated interoperable bridges for sharing educational remote laboratories. In Computers in Human Behavior. vol. 30, pp. 389-395.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Pablo Orduña and et al.2014. Towards a microRLMS approach for shared development of remote laboratories. In 2014 11th International Conference on Remote Engineering and Virtual Instrumentation (REV). https://doi.org/10.1109/REV.2014.6784192Google ScholarGoogle Scholar
  23. F. Schauer and et al.2016. Remlabnet iii - federated remote laboratory management system for university and secondary schools. In 2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV). pp. 238-241.Google ScholarGoogle Scholar
  24. S. Zug and et al.2017. Poster - Industrial eLAB. In BMBF-Fachtagung „Hochschule im digitalen Zeitalter“. Berlin, Germany.Google ScholarGoogle Scholar

Index Terms

  1. Remote Laboratory for Activating Lecture Hall Teaching and Distance Learning
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            TEEM'21: Ninth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM'21)
            October 2021
            823 pages
            ISBN:9781450390668
            DOI:10.1145/3486011
            • Editors:
            • Marc Alier,
            • David Fonseca

            Copyright © 2021 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 20 December 2021

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed limited

            Acceptance Rates

            Overall Acceptance Rate496of705submissions,70%
          • Article Metrics

            • Downloads (Last 12 months)14
            • Downloads (Last 6 weeks)2

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format