skip to main content
research-article

Seeing Colours: Addressing Colour Vision Deficiency with Vision Augmentations using Computational Glasses

Published: 14 January 2022 Publication History

Abstract

Colour vision deficiency is a common visual impairment that cannot be compensated for using optical lenses in traditional glasses, and currently remains untreatable. In our work, we report on research on Computational Glasses for compensating colour vision deficiency. While existing research only showed corrected images within the periphery or as an indirect aid, Computational Glasses build on modified standard optical see-through head-mounted displays and directly modulate the user’s vision, consequently adapting their perception of colours. In this work, we present an exhaustive literature review of colour vision deficiency compensation and subsequent findings; several prototypes with varying advantages—from well-controlled bench prototypes to less controlled but higher application portable prototypes; and a series of studies evaluating our approach starting with proving its efficacy, comparing to the state-of-the-art, and extending beyond static lab prototypes looking at real world applicability. Finally, we evaluated directions for future compensation methods for computational glasses.

References

[1]
T. Amano and H. Kato. 2010. Appearance control by projector camera feedback for visually impaired. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, San Francisco, CA, 57–63. DOI:DOI:
[2]
Jihye An and Jinho Park. 2014. A contrast-based color conversion method for the maintenance of sense of the people with color vision deficiency. Journal of Digital Contents Society 15, 6 (2014), 751–761.
[3]
C. Anagnostopoulos and Ioannis Anagnostopoulos. 2007. Intelligent modification for the daltonization process of digitized paintings. In Proceedings of the 5th International Conference on Computer Vision Systems. IEEE, San Francisco, CA.
[4]
Bayu Sri Ananto, Riri Fitri Sari, and Ruki Harwahyu. 2011. Color transformation for color blind compensation on augmented reality system. In Proceedings of the 2011 International Conference on User Science and Engineering. IEEE, Selangor, Malaysia, 129–134. DOI:DOI:
[5]
C. Attard and F. Inguanez. 2019. Chrovision and true colour: Applications for colour impaired persons. In Proceedings of the 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA’19). IEEE, Dubrovnik, Croatia, 360–365.
[6]
Hujun Bao, Weifeng Chen, and Wei Chen. 2011. An efficient direct volume rendering approach for dichromats. IEEE Transactions on Visualization and Computer Graphics 17, 12 (2011), 2144–2152. DOI:DOI:https://doi.org/10.1109/TVCG.2011.164
[7]
Jibin Bao, Yuanyuan Wang, Yu Ma, and Xiaodong Gu. 2008. Re-coloring images for dichromats based on an improved adaptive mapping algorithm. In Proceedings of the 2008 International Conference on Audio, Language and Image Processing. IEEE, Shanghai, China, 152–156. DOI:DOI:
[8]
Shi Bao, Go Tanaka, Hakaru Tamukoh, and Noriaki Suetake. 2015. Improvement of lightness modification method based on craik-O’brien effect for dichromats. In Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS’15). IEEE, Nusa Dua Bali, Indonesia, 75–78.
[9]
Kevin Bastien, Dominique Mallet, and Dave Saint-Amour. 2020. Characterizing the effects of enchroma glasses on color discrimination. Optometry and Vision Science 97, 10 (2020), 903–910.
[10]
I. Besic, S. Omanovic, and D. Boskovic. 2019. Time-domain color mapping for color vision deficiency assistive technology. In Proceedings of the 2019 2nd International Conference on Signal Processing and Information Security (ICSPIS’19). IEEE, Dubai, United Arab Emirates, 1–4.
[11]
Jia bin Huang, Sih ying Wu, and Chu song Chen. 2008. Enhancing Color Representation for the Color Vision Impaired.
[12]
Thomas Bräunl, Brendan McCane, Mariano Rivera, and Xinguo Yu. 2016. Color conversion for color blindness employing multilayer neural network with perceptual model. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 8–19. DOI:DOI:
[13]
H. Brettel, F. Viénot, and J. D. Mollon. 1997. Computerized simulation of color appearance for dichromats. Journal of the Optical Society of America. A, Optics, Image Science, and Vision 14, 10 (1997), 2647–2655. DOI:DOI:
[14]
Dermot Browne, Peter Totterdell, and Mike Norman (Eds.). 1990. Adaptive User Interfaces. Academic Press Ltd., London, UK.
[15]
P. Chakravarthula, D. Dunn, K. Akşit, and H. Fuchs. 2018. FocusAR: Auto-focus augmented reality eyeglasses for both real world and virtual imagery. IEEE Transactions on Visualization and Computer Graphics 24, 11 (2018), 2906–2916. DOI:DOI:
[16]
Xin Bei V. Chan, Shi Min S. Goh, and Ngiap Chuan Tan. 2014. Subjects with colour vision deficiency in the community: What do primary care physicians need to know? Asia Pacific Family Medicine 13, 1 (2014), 10. DOI:DOI:
[17]
Yu Chieh Chen and Tai Shan Liao. 2011. Hardware digital color enhancement for color vision deficiencies. ETRI Journal 33, 1 (2011), 71–77. DOI:DOI:
[18]
Audrey Chia, Gus Gazzard, Louis Tong, Xiaoe Zhang, Ee-Ling Sim, Allan Fong, and Seang Mei Saw. 2008. Red-green colour blindness in Singaporean children. Clinical & Experimental Ophthalmology 36, 5 (2008), 464–467.
[19]
Barton Childs. 1989. Human biology: An introduction to human evolution, variation, growth, and adaptability. American Journal of Human Genetics 44, 4 (1989), 593.
[20]
Siew L. Ching and Maziani Sabudin. 2010. Website image colour transformation for the colour blind. In Proceedings of the 2010 2nd International Conference on Computer Technology and Development. IEEE, Cairo, Egypt, 255–259. DOI:DOI:
[21]
J. Choi, J. Lee, H. Moon, S. J. Yoo, and D. Han. 2019. Optimal color correction based on image analysis for color vision deficiency. IEEE Access 7 (2019), 154466–154479.
[22]
S. Hau Chua, Haimo Zhang, Muhammad Hammad, Soon Hau Chua, Haimo Zhang, Muhammad Hammad, Shengdong Zhao, Sahil Goyal, and Karan Singh. 2015. ColorBless: Augmenting visual information for colorblind people with binocular luster effect. ACM Transactions on Computer-Human Interaction 21, 6 (2015), 1–20. DOI:DOI:https://doi.org/10.1145/2687923
[23]
John Dalton. 1798. Extraordinary facts relating to the vision of colours. :: Color and optics. Memoirs of the Literary and Philosophical Society of Manchester 5, 1 (1798), 28–45.
[24]
S. S. Deeb. 2005. The molecular basis of variation in human color vision. Clinical Genetics 67, 5 (2005), 369–377.
[25]
Yinhui Deng, Yuanyuan Wang, Yu Ma, Jibin Bao, and Xiaodong Gu. 2007. A fixed transformation of color images for dichromats based on similarity matrices. In Proceedings of the International Conference on Intelligent Computing. SpringerLink, 1018–1028.
[26]
Paul Doliotis, George Tsekouras, Christos Nikolaos Anagnostopoulos, and Vassilis Athitsos. 2009. Intelligent modification of colors in digitized paintings for enhancing the visual perception of Color-blind viewers. In IFIP International Federation for Information Processing, Vol. 296. Springer US, Boston, MA, 293–301. https://doi.org/10.1007/978-1-4419-0221-4_35
[27]
David Flatla and Carl Gutwin. 2012. SSMRecolor: Improving recoloring tools with situation-specific models of color differentiation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’12). ACM, New York, NY, 2297–2306. DOI:DOI:https://doi.org/10.1145/2207676.2208388
[28]
David Flatla, Katharina Reinecke, Carl Gutwin, and Krzysztof Gajos. 2013. SPRWeb: Preserving subjective responses to website colour schemes through automatic recolouring. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, New York, NY, 2069–2078. DOI:DOI:https://doi.org/10.1145/2470654.2481283
[29]
David R. Flatla, Alan R. Andrade, Ross D. Teviotdale, Dylan L. Knowles, and Craig Stewart. 2015. ColourID: Improving colour identification for people with impaired colour vision. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, New York, NY, 3543–3552. DOI:https://doi.org/10.1145/2702123.2702578
[30]
David R. Flatla and Carl Gutwin. 2010. Individual Models of Color Differentiation to Improve Interpretability of Information Visualization. ACM, New York, NY, 2563–2572. DOI:https://doi.org/10.1145/1753326.1753715
[31]
David R. Flatla and Carl Gutwin. 2011. Improving calibration time and accuracy for situation-specific models of color differentiation. In Proceedings of the 13th International ACM SIGACCESS Conference on Computers and Accessibility. ACM, New York, NY, 195. DOI:DOI:https://doi.org/10.1145/2049536.2049572
[32]
David R. Flatla and Carl Gutwin. 2012. Situation-specific models of color differentiation. ACM Transactions on Accessible Computing 4, 3 (2012), 1–44. DOI:DOI:https://doi.org/10.1145/2399193.2399197
[33]
David R. Flatla and Carl Gutwin. 2012. “So that’s what you see: Building understanding with personalized simulations of colour vision deficiency”. In Proceedings of the 14th International ACM SIGACCESS Conference on Computers and Accessibility. ACM, New York, NY, 167–174. DOI:DOI:https://doi.org/10.1145/2384916.2384946
[34]
L. Gómez-Robledo, E. M. Valero, R. Huertas, M. A. Martínez-Domingo, and J. Hernández-Andrés. 2018. Do EnChroma glasses improve color vision for colorblind subjects? Optics Express 26, 22 (Oct. 2018), 28693–28703. DOI:DOI:
[35]
J. Grubert, T. Langlotz, S. Zollmann, and H. Regenbrecht. 2016. Towards pervasive augmented reality: Context-awareness in augmented reality. IEEE Transactions on Visualization and Computer Graphics 23, 6 (2016), 1706–1724. DOI:DOI:https://doi.org/10.1109/TVCG.2016.2543720
[36]
S. Hasana, Y. Fujimoto, A. Plopski, M. Kanbara, and H. Kato. 2019. Improving color discrimination for color vision deficiency (CVD) with temporal-domain modulation. In Proceedings of the 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct’19). IEEE, New York, NY, 243–244.
[37]
Matthew Herbst and Bo Brinkman. 2014. Color-via-pattern: Distinguishing colors of confusion without affecting perceived brightness. In Proceedings of the 16th International ACM SIGACCESS Conference on Computers & Accessibility. ACM, New York, NY, 245–246. DOI:DOI:https://doi.org/10.1145/2661334.2661383
[38]
Yuichi Hiroi, Takumi Kaminokado, Atsushi Mori, and Yuta Itoh. 2020. DehazeGlasses: Optical dehazing with an occlusion capable see-through display. In Proceedings of the Augmented Humans International Conference (AHs’20). ACM, New York, NY, Article 3, 11 pages. DOI:DOI:https://doi.org/10.1145/3384657.3384781
[39]
X. Hu, X. Liu, X. Mao, and T. Wong. 2019. Colorblind-shareable videos. In Proceedings of the 2019 International Conference on Cyberworlds (CW’19). IEEE, New York, NY, 356–359.
[40]
X. Hu, Z. Zhang, X. Liu, and T. Wong. 2019. Deep visual sharing with colorblind. IEEE Transactions on Computational Imaging 5, 4 (2019), 649–659.
[41]
Chun Rong Huang, Kuo Chuan Chiu, and Chu Song Chen. 2011. Temporal color consistency-based video reproduction for dichromats. IEEE Transactions on Multimedia 13, 5 (2011), 950–960. DOI:DOI:https://doi.org/10.1109/TMM.2011.2135844
[42]
Jia-Bin Huang, Chu Song Chen, Tzu-Cheng Jen, and Sheng-Jyh Wang. 2009. Image recolorization for the colorblind. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, New York, NY, 1161–1164.
[43]
Jia Bin Huang, Yu Cheng Tseng, Se In Wu, and Sheng Jyh Wang. 2007. Information preserving color transformation for protanopia and deuteranopia. IEEE Signal Processing Letters 14, 10 (2007), 711–714. DOI:DOI:
[44]
Po-chieh Hung and Naoko Hiramatsu. 2013. A Colour Conversion Method Which Allows Colourblind and Normal-Vision People Share Documents with Colour Content. Technical Report. Konica Minolta. 30–36 pages.
[45]
Gennaro Iaccarino and Delfina Malandrino. 2006. Efficient edge-services for colorblind users. In Proceedings of the 15th International Conference on World Wide Web. ACM, New York, NY, 919–920. DOI:DOI:https://doi.org/10.1145/1135777.1135944
[46]
Manabu Ichikawa, Kiyoshi Tanaka, Shoji Kondo, Koji Hiroshima, Kazuo Ichikawa, Shoko Tanabe, and Kiichiro Fukami. 2003. Web-page color modification for barrier-free color vision with genetic algorithm. In Genetic and Evolutionary Computation, Vol. 2724. Springer, Germany, 2134–2146. DOI:DOI:https://doi.org/10.1007/3-540-45110-2
[47]
Manabu Ichikawa, Kiyoshi Tanaka, Shoji Kondo, Koji Hiroshima, Kazuo Ichikawa, Shoko Tanabe, and Kiichiro Fukami. 2004. Preliminary study on color modification for still images to realize barrier-free color vision. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. Vol. 1. IEEE, New York, NY, 36–41. DOI:DOI:
[48]
Yuta Itoh and Gudrun Klinker. 2014. Interaction-free calibration for optical see-through head-mounted displays based on 3d eye localization. In Proceedings of the 2014 IEEE Symposium on 3d User Interfaces. IEEE, New York, NY, 75–82.
[49]
Yuta Itoh and Gudrun Klinker. 2015. Simultaneous direct and augmented view distortion calibration of optical see-through head-mounted displays. In Proceedings of the 2015 IEEE International Symposium on Mixed and Augmented Reality. IEEE, New York, NY, 43–48.
[50]
Yuta Itoh, Tobias Langlotz, Daisuke Iwai, Kiyoshi Kiyokawa, and Toshiyuki Amano. 2019. Light attenuation display: Subtractive see-through near-eye display via spatial color filtering. IEEE Transactions on Visualization and Computer Graphics 25, 5 (2019), 1951–1960.
[51]
Yuta Itoh, Tobias Langlotz, Jonathan Sutton, and Alexander Plopski. 2021. Towards indistinguishable augmented reality: A survey on optical see-through head-mounted displays. ACM Comuting Surveys 54, 6 (July 2021), 36 pages. DOI:DOI:https://doi.org/10.1145/3453157
[52]
Y. Itoh, T. Langlotz, S. Zollmann, D. Iwai, K. Kiyokawa, and T. Amano. 2021. Computational phase-modulated eyeglasses. IEEE Transactions on Visualization & Computer Graphics 27, 3 (Oct. 2021), 1–1. DOI:DOI:
[53]
Gerald H. Jacobs. 2009. Evolution of colour vision in mammals. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences 364, 1531 (Oct. 2009), 2957–2967. DOI:DOI:
[54]
Luke Jefferson and Richard Harvey. 2006. Accommodating color blind computer users. In Proceedings of the 8th International ACM SIGACCESS Conference on Computers and Accessibility Assets. ACM, New York, NY, 40–47. DOI:DOI:https://doi.org/10.1145/1168987.1168996
[55]
Luke Jefferson and Richard Harvey. 2007. An interface to support color blind computer users. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’07). ACM, New York, NY, 1535–1538. DOI:DOI:https://doi.org/10.1145/1240624.1240855
[56]
Bernhard Jenny and Nathaniel Vaughn Kelso. 2007. Color design for the color vision impaired. Cartographic Perspectives 4, 58 (2007), 61–67. DOI:DOI:
[57]
Bernhard Jenny and Nathaniel Vaughn Kelso. 2007. Designing maps for the colour-vision impaired. Bulletin of the Society of Cartographers 41, 1–2 (2007), 9–12.
[58]
Jae Yun Jeong, Hyun Ji Kim, Young Hyun Kim, Tae Shick Wang, and Sung Jea Ko. 2012. Enhanced re-coloring method with an information preserving property for color-blind person. In Proceedings of the IEEE International Conference on Consumer Electronics. IEEE, New York, NY, 600–601. DOI:DOI:
[59]
Jae Yun Jeong, Hyun Ji Kim, Tae Shick Wang, Seung Won Jung, and Sung Jea Ko. 2012. Real-time video re-coloring algorithm considering the temporal color consistency for the color-blind. IEEE Transactions on Consumer Electronics 58, 2 (2012), 721–729. DOI:DOI:
[60]
Jae Yun Jeong, Hyun Ji Kim, Tae Shick Wang, Yeo Jin Yoon, and Sung Jea Ko. 2011. An efficient re-coloring method with information preserving for the color-blind. IEEE Transactions on Consumer Electronics 57, 4 (2011), 1953–1960. DOI:DOI:
[61]
M. Kalloniatis and C. Luu. 2007. The perception of color. In Webvision: The Organization of the Retina and Visual System. University of Utah Health Sciences Center, 1–27.
[62]
Hiroaki Kotera. 2012. Optimal daltonization by spectral shift for dichromatic vision. In Proceedings of the Color and Imaging Conference. Society for Imaging Science and Technology, Springfield, 302–308.
[63]
George Alex Koulieris, Kaan Akşit, Michael Stengel, Rafał K. Mantiuk, Katerina Mania, and Christian Richardt. 2019. Near-eye display and tracking technologies for virtual and augmented reality. In Computer Graphics Forum. Vol. 38. Wiley, 493–519.
[64]
Giovane R. Kuhn, Manuel M. Oliveira, and L. A. F. Fernandes. 2008. An efficient naturalness-preserving image-recoloring method for dichromats. IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008), 1747–1754. DOI:DOI:https://doi.org/10.1109/TVCG.2008.112
[65]
Chin Lun Lai and Shu Wen Chang. 2009. An image processing based visual compensation system for vision defects. Proceedings of the 2009 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing 5, 1 (2009), 559–562. DOI:https://doi.org/10.1109/IIH-MSP.2009.126
[66]
Chin Lun Lai, Shu Wen Chang, and Jyh Sheen. 2009. An integrated portable vision assistant agency for the visual impaired people. In Proceedings of the 2009 IEEE International Conference on Control and Automation. IEEE, New York, NY, 2311–2316. DOI:DOI:
[67]
Tobias Langlotz, Matthew Cook, and Holger Regenbrecht Member. 2016. Real-time radiometric compensation for optical see-through head-mounted displays. IEEE Transactions on Visualization and Computer Graphics 22, 11 (2016), 2385–2394.
[68]
Tobias Langlotz, Jonathan Sutton, Stefanie Zollmann, Yuta Itoh, and Holger Regenbrecht. 2018. ChromaGlasses: Computational Glasses for Compensating Colour Blindness. ACM, New York, NY, 1–12. DOI:https://doi.org/10.1145/3173574.3173964
[69]
Cheryl Lau, Nicolas Perdu, Carlos E. Rodríguez-Pardo, Sabine Süsstrunk, and Gaurav Sharma. 2015. An interactive app for color deficient viewers. In Proceedings of the SPIE-IS&T Electronic Imaging. SPIE, Bellingham, 939512. DOI:DOI:
[70]
Jinmi Lee and Wellington P. Dos Santos. 2010. Fuzzy-based simulation of real color blindness. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’10). IEEE, New York, NY, 6607–6610. DOI:DOI:
[71]
Jinmi Lee and Wellington Pinheiro Dos Santos. 2011. An adaptive fuzzy-based system to simulate, quantify and compensate color blindness. Integrated Computer-Aided Engineering 18, 1 (2011), 29–40. DOI:DOI:https://doi.org/10.3233/ICA-2011-0356
[72]
Peter Lincoln, Alex Blate, Montek Singh, Turner Whitted, Andrei State, Anselmo Lastra, and Henry Fuchs. 2016. From motion to photons in 80 microseconds: Towards minimal latency for virtual and augmented reality. IEEE Transactions on Visualization and Computer Graphics 22, 4 (2016), 1367–1376.
[73]
Yu Ma, Xiaodong Gu, and Yuanyuan Wang. 2009. Color discrimination enhancement for dichromats using self-organizing color transformation. Information Sciences 179, 6 (2009), 830–843. DOI:DOI:https://doi.org/10.1016/j.ins.2008.11.010
[74]
Yu Ma, En Wang, and Yuanyuan Wang. 2011. An embedded image processing device for color vision deficiency. In Proceedings of the 4th International Conference on Biomedical Engineering and Informatics. 1041–1045. DOI:DOI:
[75]
Rhouri MacAlpine and David R. Flatla. 2016. Real-time mobile personalized simulations of impaired colour vision. In Proceedings of the 18th International ACM SIGACCESS Conference on Computers and Accessibility. ACM, New York, NY, 181–189. DOI:DOI:https://doi.org/10.1145/2982142.2982170
[76]
Gustavo M. MacHado and Manuel M. Oliveira. 2010. Real-time temporal-coherent color contrast enhancement for dichromats. In Proceedings of the 12th Eurographics/IEEE - VGTC conference on Visualization.933–942. DOI:DOI:https://doi.org/10.1111/j.1467-8659.2009.01701.x
[77]
G. M. Machado, M. M. Oliveira, and L. A. F. Fernandes. 2010. A physiologically-based model for simulation of color vision deficiency. IEEE Transactions on Visualization and Computer Graphics 16, 2 (2010), 352. DOI:DOI:https://doi.org/10.1109/tvcg.2010.10
[78]
Naoya Makibuchi, Haruhisa Kato, and Akio Yoneyama. 2013. Vision-based robust calibration for optical see-through head-mounted displays. In Proceedings of the 2013 IEEE International Conference on Image Processing. IEEE, New York, NY, 2177–2181.
[79]
Paolo Melillo, Daniel Riccio, Luigi Di Perna, Gabriella Sanniti Di Baja, Maurizio De Nino, Settimio Rossi, Francesco Testa, Francesca Simonelli, and Maria Frucci. 2017. Wearable improved vision system for color vision deficiency correction. IEEE Journal of Translational Engineering in Health and Medicine 5 (2017), 1–7. DOI:DOI:
[80]
Meng Meng and Go Tanaka. 2016. Proposal of minimization problem based lightness modification for protanopia and deuteranopia. In Proceedings of the 2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS’16). IEEE, New York, NY, 1–6.
[81]
M. Meng and G. Tanaka. 2019. Proposal of minimization problem based lightness modification method considering visual characteristics of protanopia and deuteranopia. In Proceedings of the 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC’19). IEEE, New York, NY, 1417–1422.
[82]
Gary W. Meyer and Donald P. Greenberg. 1988. Color-defective vision and computer graphics displays. IEEE Computer Graphics and Applications 8, 5 (Sep. 1988), 28–40. DOI:DOI:https://doi.org/10.1109/38.7759
[83]
Neda Milić, Miklós Hoffmann, Tibor Tómács, Dragoljub Novaković, and Branko Milosavljević. 2015. A content-dependent naturalness-preserving daltonization method for dichromatic and anomalous trichromatic color vision deficiencies. Journal of Imaging Science and Technology 59, 1 (2015), 105041–1050410. DOI:DOI:
[84]
Rika Mochizuki, Tatsuya Nakamura, Jinhui Chao, and Reiner Lenz. 2008. Color-weak correction by discrimination threshold matching. In Proceedings of the Conference on Colour in Graphics, Imaging, and Vision. Society for Imaging Science and Technology, Springfield, 208–213.
[85]
Rika Mochizuki, Satoshi Oshima, and Jinhui Chao. 2011. Fast color-weakness compensation with discrimination threshold matching. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 6626 LNCS. SpringerLink, 176–187. DOI:DOI:https://doi.org/10.1007/978-3-642-20404-3_14
[86]
Rika Mochizuki, Satoshi Oshima, Reiner Lenz, and Jinhui Chao. 2011. Exact compensation of color-weakness with discrimination threshold matching. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 6768 LNCS. SpringerLink, 155–164. DOI:DOI:https://doi.org/10.1007/978-3-642-21657-2_17
[87]
Kenneth Moser, Yuta Itoh, Kohei Oshima, J. Edward Swan, Gudrun Klinker, and Christian Sandor. 2015. Subjective evaluation of a semi-automatic optical see-through head-mounted display calibration technique. IEEE Transactions on Visualization and Computer Graphics 21, 4 (2015), 491–500.
[88]
Jeho Nam, Yong Man Ro, Youngsik Huh, and Munchurl Kim. 2005. Visual content adaptation according to user perception characteristics. IEEE Transactions on Multimedia 7, 3 (2005), 435–445. DOI:DOI:https://doi.org/10.1109/TMM.2005.846801
[89]
Pankaj Kumar Nigam and Mahua Bhattacharya. 2013. Colour vision deficiency correction in image processing. In Proceedings of the 2013 IEEE International Conference on Bioinformatics and Biomedicine. IEEE, New York, NY, 1–8. DOI:DOI:
[90]
Tomoyuki Ohkubo and Kazuyuki Kobayashi. 2008. A color compensation vision system for color-blind people. In Proceedings of the SICE Annual Conference. IEEE, New York, NY, 1286–1289. DOI:DOI:
[91]
T. Ohkubo, K. Kobayashi, K. Watanabe, and Y. Kurihara. 2010. Development of a time-sharing-based color-assisted vision system for persons with color-vision deficiency. In Proceedings of the 2010 SICE Annual Conference. IEEE, New York, NY, 2499–2503.
[92]
Makoto Oka, Naoki Ozawa, Hirohiko Mori, and Akito Sakuri. 2010. A study on color conversion for the anomalous trichromat to Identify Color. In Proceedings of the 2010 SICE Annual Conference. IEEE, New York, NY, 1441–1443.
[93]
Hideaki Orii, Hideaki Kawano, Hiroshi Maeda, and Takaharu Kouda. 2014. Color conversion algorithm for color blindness using self-organizing map. In Proceedings of the 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems. IEEE, New York, NY, 910–913. DOI:DOI:
[94]
Satoshi Oshima, Rika Mochizuki, Reiner Lenz, and Jinhui Chao. 2016. Modeling, measuring, and compensating color weak vision. IEEE Transactions on Image Processing 25, 6 (2016), 2587–2600. DOI:https://doi.org/10.1109/TIP.2016.2539679
[95]
C. F. Ostia, D. A. Padilla, F. Reidj, G. Cruz, R. J. D. Galang, A. S. M. Josafat, and E. F. Victoria. 2019. Electronic vision system with personalized calibration of color compensation for people with partial color vision deficiency using raspberry pi digital image processing. In Proceedings of the 2019 5th International Conference on Control, Automation and Robotics (ICCAR’19). IEEE, New York, NY, 315–319.
[96]
Nitish Padmanaban, Robert K. Konrad, and Gordon Wetzstein. 2019. Autofocals: Evaluating gaze-contingent eyeglasses for presbyopes. In Proceedings of the ACM SIGGRAPH 2019 Talks (SIGGRAPH’19). ACM, New York, NY, Article 55, 2 pages. DOI:DOI:https://doi.org/10.1145/3306307.3328147
[97]
Jinsan Park, Jongho Choi, and Dongil Han. 2011. Applying enhanced confusion line color transform using color segmentation for mobile applications. In Proceedings of the 1st ACIS/JNU International Conference on Computers, Networks, Systems, and Industrial Engineering. IEEE, New York, NY, 40–44. DOI:DOI:https://doi.org/10.1109/CNSI.2011.33
[98]
Eli Peli, Gang Luo, Alex Bowers, and Noa Rensing. 2007. Applications of augmented vision head-mounted systems in vision rehabilitation. Journal of the Society for Information Display 15, 12 (2007), 1037–1045. DOI:DOI:
[99]
Alexander Plopski, Yuta Itoh, Christian Nitschke, Kiyoshi Kiyokawa, Gudrun Klinker, and Haruo Takemura. 2015. Corneal-imaging calibration for optical see-through head-mounted displays. IEEE Transactions on Visualization and Computer Graphics 21, 4 (2015), 481–490.
[100]
Andrei Popleteev, Nicolas Louveton, and Roderick McCall. 2015. Colorizer: Smart glasses aid for the colorblind. In Proceedings of the 2015 Workshop on Wearable Systems and Applications. ACM, New York, NY, 7–8. DOI:DOI:https://doi.org/10.1145/2753509.2753516
[101]
S. Poret, R. D. Dony, and S. Gregori. 2009. Image processing for colour blindness correction. In Proceedings of the 2009 IEEE Toronto International Conference on Science and Technology for Humanity. IEEE, New York, NY, 539–544. DOI:DOI:
[102]
S. Pundlik, H. Yi, R. Liu, E. Peli, and G. Luo. 2017. Magnifying smartphone screen using Google Glass for low-vision users. IEEE Transactions on Neural Systems and Rehabilitation Engineering 25, 1 (2017), 52–61. DOI:DOI:
[103]
Karl Rasche, Robert Geist, and James Westall. 2005. Detail preserving reproduction of color images for monochromats and dichromats. IEEE Computer Graphics and Applications 25, 3 (2005), 22–30. DOI:DOI:https://doi.org/10.1109/MCG.2005.54
[104]
Karl Rasche, Robert Geist, and James Westall. 2005. Re-coloring images for gamuts of lower dimension. Computer Graphics Forum 24, 3 (2005), 423–432. DOI:DOI:
[105]
Madalena G. Ribeiro and Abel J. P. Gomes. 2013. A skillet-based recoloring algorithm for dichromats. In Proceedings of the 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services. IEEE, New York, NY, 702–706. DOI:DOI:
[106]
Carlos E. Rodríguez-Pardo and Gaurav Sharma. 2011. Adaptive color visualization for dichromats using a customized hierarchical palette. IS&T/SPIE Electronic Imaging 7866 (2011), 786603–786603–9. DOI:DOI:
[107]
J. Ruminski, M. Bajorek, J. Ruminska, J. Wtorek, and A. Bujnowski. 2012. Computerized color processing for dichromats. Advances in Intelligent and Soft Computing. SpringerLink, 453–470. DOI:DOI:
[108]
J. Rumiński, J. Wtorek, J. Rumińska, M. Kaczmarek, A. Bujnowski, T. Kocejko, and A. Poliński. 2010. Color transformation methods for dichromats. In Proceedings of the 3rd International Conference on Human System Interaction. IEEE, New York, NY, 634–641. DOI:DOI:
[109]
Behzad Sajadi, Aditi Majumder, Manuel M. Oliveira, Rosália G. Schneider, and Ramesh Raskar. 2013. Using patterns to encode color information for dichromats. IEEE Transactions on Visualization and Computer Graphics 19, 1 (2013), 118–129. DOI:DOI:https://doi.org/10.1109/TVCG.2012.93
[110]
S. Schmitt, S. Stein, F. Hampe, and D. Paulus. 2012. Mobile services supporting color vision deficiency. In Proceedings of the 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM’12). IEEE, New York, NY, 1413–1420. DOI:DOI:
[111]
Lindsay T. Sharpe, Andrew Stockman, Herbert Jägle, and Jeremy Nathans. 1999. Opsin Genes, Cone Photopigments, Color Vision, and Color Blindness. Cambridge University Press, Cambridge, England, 3–51.
[112]
Wuyao Shen, Xiangyu Mao, Xinghong Hu, and Tien-Tsin Wong. 2016. Seamless visual sharing with color vision deficiencies. ACM Transactions on Graphics 35, 4 (2016), 1–12. DOI:https://doi.org/10.1145/2897824.2925878
[113]
J. A. Spalding. 1999. Colour vision deficiency in the medical profession. British Journal of General Practice 49, 443 (1999), 469–475.
[114]
J. Srividhya, P. Sivakumar, and M. Rajaram. 2011. The color blindness removal technique in image by using gradient map method. In Proceedings of the International Conference on Signal Processing, Communication, Computing and Networking Technologies. IEEE, New York, NY, 24–29.
[115]
Judy M. Steward and Barry L. Cole. 1989. What do color vision defectives say about everyday tasks? Optometry and Vision Science 66, 5 (1989), 288–295.
[116]
Noriaki Suetake, Go Tanaka, Hayato Hashii, and Eiji Uchino. 2012. Simple lightness modification for color vision impaired based on Craik-O’Brien effect. Journal of the Franklin Institute 349, 6 (2012), 2093–2107. DOI:
[117]
Jonathan Sutton, Tobias Langlotz, and Yuta Itoh. 2019. Computational glasses: Vision augmentations using computational near-eye optics and displays. In Proceedings of the 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct’19). IEEE, Beijing, China, 438–442.
[118]
Oyek Talom and Nivetha P. 2016. Efficient image re-coloring mechanism for color vision deficient (CVD) persons. Elysium Journal of Engineering Research & Management 3, 1 (2016), 1–6.
[119]
Go Tanaka, Noriaki Suetake, and Eiji Uchino. 2009. Visibility improvement of undiscriminatable colors by modification of yellow-blue components for protanopia and deuteranopia. In Proceedings of the 2009 International Symposium on Intelligent Signal Processing and Communication Systems, Proceedings. IEEE, New York, NY, 562–565. DOI:DOI:
[120]
Go Tanaka, Suetake, Noriaki, and Eiji Uchino. 2010. Lightness modification of color image for protanopia and deuteranopia. Optical Review 17, 1 (2010), 14–23.
[121]
Ying Tang, Zhenyang Zhu, Masahiro Toyoura, Kentaro Go, Kenji Kashiwagi, Issei Fujishiro, and Xiaoyang Mao. 2018. Arriving light control for color vision deficiency compensation using optical see-through head-mounted display. In Proceedings of the 16th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry (VRCAI’18). ACM, New York, NY, Article 6, 6 pages. DOI:DOI:https://doi.org/10.1145/3284398.3284407
[122]
Ying Tang, Zhenyang Zhu, Masahiro Toyoura, Kentaro Go, Kenji Kashiwagi, Issei Fujishiro, and Xiaoyang Mao. 2020. ALCC-glasses: Arriving light chroma controllable optical see-through head-mounted display system for color vision deficiency compensation. Applied Sciences 10, 7 (2020), 1–16. DOI:DOI:
[123]
Enrico Tanuwidjaja, Derek Huynh, Kirsten Koa, Calvin Nguyen, Churen Shao, Patrick Torbett, Colleen Emmenegger, and Nadir Weibel. 2014. Chroma: AWearable augmented-reality solution for color blindness. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, New York, NY, 799–810. DOI:DOI:https://doi.org/10.1145/2632048.2632091
[124]
Guy Tennenholtz and Ido Zachevsky. 2017. Natural contrast enhancement for dichromats using similarity maps. In Proceedings of the 2016 IEEE International Conference on the Science of Electrical Engineering. IEEE, New York, NY, 1–5. DOI:DOI:
[125]
L. Troiano, C. Birtolo, and M. Miranda. 2008. Adapting palettes to color vision deficiencies by genetic algorithm. In Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation 2008. ACM, New York, NY, 1065–1072. DOI:DOI:https://doi.org/10.1145/1389095.1389291
[126]
Mihran Tuceryan, Yakup Genc, and Nassir Navab. 2002. Single-point active alignment method (spaam) for optical see-through hmd calibration for augmented reality. Presence: Teleoperators & Virtual Environments 11, 3 (2002), 259–276.
[127]
Venkata N. V. Varikuti, Charles Zhang, Brandon Clair, and Andrew L. Reynolds. 2020. Effect of EnChroma glasses on color vision screening using ishihara and farnsworth D-15 color vision tests. Journal of American Association for Pediatric Ophthalmology and Strabismus 24, 3 (2020), 157.e1–157.e5. DOI:DOI:
[128]
Guy Verriest, Oskar Neubauer, Marion Marre, and Andre Uvijls. 1980. New investigations concerning the relationships between congenital colour vision defects and road traffic security. International Ophthalmology 2, 2 (1980), 87–99.
[129]
Françoise Viénot, Hans Brettel, and John D. Mollon. 1999. Digital video colourmaps for checking the legibility of displays by dichromats. Color Research and Application 24, 4 (1999), 243–252. DOI:DOI:
[130]
Ken Wakita and Kenta Shimamura. 2005. SmartColor: Disambiguation framework for the colorblind. In Proceedings of the 7th International ACM SIGACCESS Conference on Computers and Accessibility. ACM, New York, NY, 158–165. DOI:DOI:https://doi.org/10.1145/1090785.1090815
[131]
Xinyi Wang, Zhenyang Zhu, Xiaodiao Chen, Masahiro Toyoura, and Xiaoyang Mao. 2020. Evaluation of color vision compensation algorithms for people with varying degrees of color vision deficiency. In Proceedings of the 2020 International Conference on Cyberworlds (CW’20). IEEE, Caen, France, 149–152. DOI:DOI:
[132]
Seungji Yang and Yong Man Ro. 2003. Visual contents adaptation for color vision deficiency. In Proceedings of the International Conference on Image Processing, Vol. 1. IEEE, New York, NY, 453–456. DOI:DOI:
[133]
Seungji Yang, Yong Man Ro, Jeho Nam, Jinwoo Hong, Sang Yul Choi, and Jin Hak Lee. 2004. Improving visual accessibility for color vision deficiency based on MPEG-21. ETRI Journal 26, 3 (2004), 195–202. DOI:DOI:
[134]
Seungji Yang, Yong Man Ro, Edward K. Wong, and Jin-Hak Lee. 2005. Color compensation for anomalous trichromats based on error score of FM-100 Hue test. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 27. IEEE, New York, NY, 6571–6574. DOI:DOI:
[135]
Seungji Yang, Yong Man Ro, Edward K. Wong, and Jin-Hak Lee. 2008. Quantification and standardized description of color vision deficiency caused by anomalous trichromats-part I: Simulation and measurement. EURASIP Journal on Image and Video Processing 2008, C (2008), 1–9. DOI:DOI:https://doi.org/10.1155/2008/487618
[136]
Seungji Yang, Yong Man Ro, Edward K. Wong, and Jin Hak Lee. 2008. Quantification and standardized description of color vision deficiency caused by anomalous trichromats - part II: Modeling and color compensation. Eurasip Journal on Image and Video Processing 2008, 3 (2008), 1–12. DOI:DOI:https://doi.org/10.1155/2008/246014
[137]
Liang Zhang, Qing Xu, Guangming Zhu, Juan Song, Xiangdong Zhang, Peiyi Shen, Wei Wei, Syed Afaq Ali Shah, and Mohammed Bennamoun. 2018. Improved colour-to-grey method using image segmentation and colour difference model for colour vision deficiency. IET Image Processing 12, 3 (Mar. 2018), 314–319. DOI:DOI:
[138]
Yuhang Zhao, Elizabeth Kupferstein, Brenda Veronica Castro, Steven Feiner, and Shiri Azenkot. 2019. Designing AR visualizations to facilitate stair navigation for people with low vision. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology. ACM, New York, NY, 387–402.
[139]
Yuhang Zhao, Sarit Szpiro, and Shiri Azenkot. 2015. ForeSee: A customizable head-mounted vision enhancement system for people with low vision. In Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility (ASSETS’15). ACM, New York, NY, 239–249. DOI:DOI:https://doi.org/10.1145/2700648.2809865
[140]
Yuhang Zhao, Sarit Szpiro, Jonathan Knighten, and Shiri Azenkot. 2016. CueSee: Exploring visual cues for people with low vision to facilitate a visual search task. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp’16). ACM, New York, NY, 73–84. DOI:DOI:https://doi.org/10.1145/2971648.2971730

Cited By

View all
  • (2024)Computational Trichromacy Reconstruction: Empowering the Color-Vision Deficient to Recognize Colors Using Augmented RealityProceedings of the 37th Annual ACM Symposium on User Interface Software and Technology10.1145/3654777.3676415(1-17)Online publication date: 13-Oct-2024
  • (2024)Exploring Visual Discomfort and Opportunities for Vision Augmentations: Visual Noise Cancellation and Head-worn LCD Light Actuators for Perception ModulationAdjunct Proceedings of the 26th International Conference on Mobile Human-Computer Interaction10.1145/3640471.3686642(1-3)Online publication date: 21-Sep-2024
  • (2024)Visual Noise Cancellation: Exploring Visual Discomfort and Opportunities for Vision AugmentationsACM Transactions on Computer-Human Interaction10.1145/363469931:2(1-26)Online publication date: 29-Jan-2024
  • Show More Cited By

Index Terms

  1. Seeing Colours: Addressing Colour Vision Deficiency with Vision Augmentations using Computational Glasses

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Computer-Human Interaction
      ACM Transactions on Computer-Human Interaction  Volume 29, Issue 3
      June 2022
      359 pages
      ISSN:1073-0516
      EISSN:1557-7325
      DOI:10.1145/3505203
      Issue’s Table of Contents

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 14 January 2022
      Accepted: 01 September 2021
      Revised: 01 September 2021
      Received: 01 April 2021
      Published in TOCHI Volume 29, Issue 3

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Computational glasses
      2. augmented reality
      3. colour blindness
      4. colour vision deficiency
      5. augmented human
      6. near-eye displays
      7. head-mounted displays
      8. augmented vision

      Qualifiers

      • Research-article
      • Refereed

      Funding Sources

      • Marsden Fund Council from government funding and a Catalyst Seed Grant
      • Royal Society of NZ and by Callaghan Innovation
      • Science for Technological Innovation National Science Challenge

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)456
      • Downloads (Last 6 weeks)81
      Reflects downloads up to 03 Mar 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Computational Trichromacy Reconstruction: Empowering the Color-Vision Deficient to Recognize Colors Using Augmented RealityProceedings of the 37th Annual ACM Symposium on User Interface Software and Technology10.1145/3654777.3676415(1-17)Online publication date: 13-Oct-2024
      • (2024)Exploring Visual Discomfort and Opportunities for Vision Augmentations: Visual Noise Cancellation and Head-worn LCD Light Actuators for Perception ModulationAdjunct Proceedings of the 26th International Conference on Mobile Human-Computer Interaction10.1145/3640471.3686642(1-3)Online publication date: 21-Sep-2024
      • (2024)Visual Noise Cancellation: Exploring Visual Discomfort and Opportunities for Vision AugmentationsACM Transactions on Computer-Human Interaction10.1145/363469931:2(1-26)Online publication date: 29-Jan-2024
      • (2024)A Design Space for Vision Augmentations and Augmented Human Perception using Digital EyewearProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642380(1-16)Online publication date: 11-May-2024
      • (2024)Grand challenges in WaterHCIProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642052(1-18)Online publication date: 11-May-2024
      • (2024)Adaptive Color Optimization Algorithm Based on Machine Vision2024 Second International Conference on Networks, Multimedia and Information Technology (NMITCON)10.1109/NMITCON62075.2024.10698911(1-5)Online publication date: 9-Aug-2024
      • (2024)VisuAid: Novel Web Application Utilising Smart Glasses for Low Vision Individuals2024 International Conference on IoT Based Control Networks and Intelligent Systems (ICICNIS)10.1109/ICICNIS64247.2024.10823342(1730-1734)Online publication date: 17-Dec-2024
      • (2023)30 Years of Solving the Wrong Problem: How Recolouring Tool Design Fails those with Colour Vision DeficiencyProceedings of the 25th International ACM SIGACCESS Conference on Computers and Accessibility10.1145/3597638.3608407(1-13)Online publication date: 22-Oct-2023
      • (2022)Color vision devices for color vision deficiency patients: A systematic review and meta‐analysisHealth Science Reports10.1002/hsr2.8425:5Online publication date: 22-Sep-2022
      • (undefined)The Impact of Technical Factors on User Experience in Augmented Reality Sports SpectatingSSRN Electronic Journal10.2139/ssrn.4019469

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      Full Text

      HTML Format

      View this article in HTML Format.

      HTML Format

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media