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ABSTRACT
In real-world recommender systems and search engines, optimizing

ranking decisions to present a ranked list of relevant items is criti-

cal. Off-policy evaluation (OPE) for ranking policies is thus gaining

a growing interest because it enables performance estimation of

new ranking policies using only logged data. Although OPE in

contextual bandits has been studied extensively, its naive applica-

tion to the ranking setting faces a critical variance issue due to the

huge item space. To tackle this problem, previous studies introduce

some assumptions on user behavior to make the combinatorial item

space tractable. However, an unrealistic assumption may, in turn,

cause serious bias. Therefore, appropriately controlling the bias-

variance tradeoff by imposing a reasonable assumption is the key

for success in OPE of ranking policies. To achieve a well-balanced

bias-variance tradeoff, we propose the Cascade Doubly Robust es-
timator building on the cascade assumption, which assumes that

a user interacts with items sequentially from the top position in

a ranking. We show that the proposed estimator is unbiased in

more cases compared to existing estimators that make stronger

assumptions. Furthermore, compared to a previous estimator based

on the same cascade assumption, the proposed estimator reduces

the variance by leveraging a control variate. Comprehensive exper-

iments on both synthetic and real-world data demonstrate that our

estimator leads to more accurate OPE than existing estimators in a

variety of settings.

CCS CONCEPTS
• Information systems→Retrievalmodels and ranking;Eval-
uation of retrieval results.
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1 INTRODUCTION
Real-world recommender and search systems (e.g., e-commerce,

music streaming, and news) aim to optimize ranking decisions to

increase sales or to enhance user satisfaction. For this purpose, ban-

dit and reinforcement learning (RL) policies are often used. There is

a growing interest in their offline performance evaluation. Offline

evaluation is beneficial, as online A/B tests entail the risk of failure

and may damage user satisfaction [4, 10, 17, 18]. Fortunately, we

often have logged data for enabling an accurate offline evaluation.

For example, the logs of a music streaming system records the list

of recommended songs (i.e., playlists) and which songs the user

listened to. This gives the system a chance to redesign the ranking

policies to lead to more relevant ranked recommendations. Exploit-

ing logged data is, however, not as straightforward as conventional

supervised machine learning because the reward is only observed

for the items chosen by the past policy [5, 11, 16].

Off-policy evaluation (OPE) is a technique to enable unbiased

performance estimation of a counterfactual (or evaluation) policy

using only logged data collected by a past (or behavior) policy.

The OPE research community has made great progress in both

contextual bandit and RL settings [1–3, 8, 9, 14, 15, 20, 21, 24]. In

the slate contextual bandit setting where we present a ranked list

of items, however, conventional OPE faces challenges because of

a huge combinatorial item space. Indeed, naive use of OPE suffers

from extreme variance in the slate contextual bandit setting [12,

13, 23]. One way to reduce the variance is introducing a reasonable

assumption on user behavior to make the combinatorial item space

tractable. However, unrealistically strong assumptions may cause

serious bias [13]. Therefore, achieving awell-balanced bias-variance

tradeoff by introducing an appropriate user behavior assumption

is the key for enabling accurate OPE of ranking policies.

PreviousWork. The prevalentmethod for OPE is Inverse Propen-
sity Scoring (IPS) [14, 20]. IPS leverages the importance sampling

technique to correct bias caused by the discrepancy between be-

havior and evaluation policies. The benefit of IPS is that it ensures

unbiasedness without any user behavior assumption. In the slate
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Figure 1: Comparison of user behavior assumptions and Markov Decision Process
Note: We let 𝑥 be a user context, 𝑎 be an item recommended by a ranking policy, 𝑟 be a reward such as a click indicator, and 𝐿 be the slate size.

Without any user behavior assumption, the reward observed at each slot is affected by all the other items in the slate. In contrast, the

independence assumption assumes that a user interacts with each item independently. Therefore, the reward observed at each slot is independent

of the other items. The cascade assumption assumes that a user interacts with items sequentially from the top position to the bottom. Thus, the

reward observed at each slot is dependent on only the items presented at higher positions. The cascade assumption can be interpreted as a

simplified version of Markov Decision Process (MDP) in RL [22], where we do not consider user context transitions. The red dotted arrows show

the connection between the causal structural assumption of MDP and that of the cascade assumption.

bandit setting, however, IPS can suffer from impractical variance, as

the item space becomes combinatorially large [12, 13, 23]. Indepen-
dent IPS (IIPS) builds on the independence assumption to address

the variance issue [12]. The independence assumption assumes that

a user interacts with items independently, as shown in Figure 1.

IIPS is unbiased when this assumption is satisfied and reduces the

variance of IPS. In real-world data where the assumption rarely

holds, however, IIPS can yield serious bias [13].

To address the variance issue of IPS and the bias issue of IIPS,

McInerney et al. [13] proposed Reward interaction IPS (RIPS), which
relies on the cascade assumption. The cascade assumption assumes

that a user interacts with a list of items sequentially from the top

position to the bottom [6]. Thus, the reward observed at each po-

sition depends only on the items at higher positions, as shown in

Figure 1. Exploiting this reasonable assumption, RIPS achieves a

better bias-variance tradeoff compared to both IPS and IIPS. Specif-

ically, it reduces the variance of IPS and the bias of IIPS. However,

RIPS can still suffer from large variance when there is a significant

mismatch between the evaluation and behavior policies or the slate

size is large, as we will show in the theoretical analysis.

Contributions. To address the shortcomings of the previous

estimators, we develop the Cascade Doubly Robust (Cascade-DR)
estimator for ranking policies that works under the cascade assump-

tion. DR has been popular for evaluating contextual bandit and RL

policies because of its desirable statistical properties [2, 4, 8, 24].

This estimator improves the stability of the IPS variants, by intro-

ducing a baseline estimator as a control variate and performing

propensity weighting only on its residual. However, deriving a DR

estimator that fits the cascade assumption is non-trivial because of

the sequential nature of the assumption.

In this work, we explore a way to define a DR estimator in the

slate contextual bandit setting to further reduce the variance of

the previous estimators. A key trick in deriving Cascade-DR is to

interpret the cascade assumption as a simplified Markov Decision

Process (MDP) used in RL [22]. In our theoretical analysis, we prove

that Cascade-DR provides unbiased OPE when the cascade assump-

tion holds. This implies that the proposed estimator is unbiased

in more cases compared to IIPS, as the cascade assumption is less

restrictive than the independence assumption of IIPS. Moreover,

Cascade-DR reduces the variance of RIPS under a reasonable as-

sumption about the accuracy of the baseline estimator. Thus, the

proposed estimator ensures better statistical properties than the

previous estimators, including IPS, IIPS, and RIPS.

To illustrate the practical benefit of our method, we conduct

comprehensive experiments on both synthetic and real-world data.

The results demonstrate that the proposed estimator can lead to a

more accurate and stable OPE than the other estimators for ranking

policies in various settings.

Our contributions are summarized as follows:

• We propose Cascade-DR for OPE of ranking policies, which

leverages the Markov structure of the cascade assumption.

• Weprove the statistical advantages of the proposed estimator,

including unbiasedness and variance reduction.

• We conduct experiments on both synthetic and real-world

data. The results demonstrate that the proposed estimator

outperforms the existing estimators in various situations.

2 PRELIMINARIES
In this section, we describe the problem setting and summarize

existing estimators with their statistical properties.

2.1 Setup
We consider a slate contextual bandit setting. Let 𝒙 ∈ X ⊆ R𝑑
be a context vector (e.g., the user’s demographic profile) that the



decision maker observes when choosing a slate action. Let A be

a finite set of discrete actions. Let 𝒂 = (𝑎1, 𝑎2, . . . , 𝑎𝑙 , . . . , 𝑎𝐿) be
a slate action vector where 𝐿 is the length of a slate (slate size).

We call a function 𝜋 : X → Δ(A𝐿) a factorizable policy. It maps

each context 𝒙 ∈ X into a distribution over the slate action, where

𝜋 (𝒂 | 𝒙) := ∏𝐿
𝑙=1

𝜋 (𝑎𝑙 | 𝒙) is the probability of taking slate action 𝒂
given context 𝒙 . As the action selection is independent across slots,

a factorizable policy can choose the same action more than twice in

a slate. In contrast, we call 𝜋 : X → Δ(Π𝐿 (A)) a non-factorizable
policy, where Π𝐿 (A) is a set of 𝐿-permutation of A. In this case, a

policy chooses a slate action without any duplicates among slots

(i.e., ∀1 ≤ 𝑘 < 𝑙 ≤ 𝐿, 𝑎𝑘 ≠ 𝑎𝑙 ). We use 𝒓 = (𝑟1, 𝑟2, . . . , 𝑟𝑙 , . . . , 𝑟𝐿) to
denote a reward vector, where 𝑟𝑙 is a random variable representing

the slot-level reward observed at slot 𝑙 (e.g., whether the item

recommended at slot 𝑙 results in a click). Following McInerney et al.

[13], we assume that the slate-level reward 𝑟∗ is a weighted sum

of the slot-level rewards, i.e.,

𝑟∗ =
𝐿∑︁
𝑙=1

𝛼𝑙𝑟𝑙 ,

where 𝛼𝑙 denotes a non-negative weight for slot 𝑙 . Our definition

of the slate-level reward captures a wide variety of information

retrieval metrics. For example, when 𝛼𝑙 := 1/log
2
(𝑙 + 1), 𝑟∗ is called

the discounted cumulative gain (DCG) [7]. Regarding the action

and reward vectors (𝒂, 𝒓 ), we use the following notations.

• partial set of slate actions: 𝒂𝑙1:𝑙2 := (𝑎𝑙1 , 𝑎𝑙1+1, . . . , 𝑎𝑙2−1, 𝑎𝑙2 )
• partial set of slate rewards: 𝒓𝑙1:𝑙2 := (𝑟𝑙1 , 𝑟𝑙1+1, . . . , 𝑟𝑙2−1, 𝑟𝑙2 )

Let D := {(𝒙 (𝑖) , 𝒂 (𝑖) , 𝒓 (𝑖) )}𝑛
𝑖=1

be logged bandit data with 𝑛

independent observations. 𝒂 (𝑖) is a vector of discrete variables

indicating which slate action is chosen for individual 𝑖 . 𝒙 (𝑖) and
𝒓 (𝑖) denote context and reward vectors observed for 𝑖 . We assume

that a logged bandit dataset is generated by a behavior policy 𝜋𝑏 :

{(𝒙 (𝑖) , 𝒂 (𝑖) , 𝒓 (𝑖) )}𝑛𝑖=1

∼
𝑛∏
𝑖=1

𝑝 (𝒙 (𝑖) )𝜋𝑏 (𝒂 (𝑖) | 𝒙 (𝑖) )𝑝 (𝒓 (𝑖) | 𝒙 (𝑖) , 𝒂 (𝑖) ) .

Note that, throughout the paper, we assume that there is no unob-

served confounder, the logged dataset has full support over slate

actions, and slot-level rewards (𝑟1, . . . , 𝑟𝐿) are all observable.

For a function 𝑓 (𝒙, 𝒂, 𝒓), we use

E𝑛 [𝑓 (𝒙, 𝒂, 𝒓)] := 𝑛−1
∑︁

(𝒙 (𝑖 ) ,𝒂 (𝑖 ) ,𝒓 (𝑖 ) ) ∈D
𝑓 (𝒙 (𝑖) , 𝒂 (𝑖) , 𝒓 (𝑖) )

to denote its empirical expectation over observations inD. We also

let ED [·] := ED∼∏𝑛
𝑖=1 𝑝 (𝒙 (𝑖 ) )𝜋𝑏 (𝒂 (𝑖 ) |𝒙 (𝑖 ) )𝑝 (𝒓 (𝑖 ) |𝒙 (𝑖 ) ,𝒂 (𝑖 ) ) [·]. Finally,

we use 𝑞(𝒙, 𝒂) := E𝒓∼𝑝 (𝒓 |𝒙,𝒂) [𝑟∗ | 𝒙, 𝒂] to denote the slate-level
mean reward function and 𝑞𝑙 (𝒙, 𝒂) := E𝒓∼𝑝 (𝒓 |𝒙,𝒂) [𝑟𝑙 | 𝒙, 𝒂] to
denote the slot-level mean reward function.

2.2 Estimation Target
We are interested in using logged bandit data to estimate the fol-

lowing policy value of any given evaluation policy 𝜋𝑒 which might

be different from 𝜋𝑏 :

𝑉 (𝜋𝑒 ) := E(𝒙,𝒂,𝒓 )∼𝑝 (𝒙)𝜋𝑒 (𝒂 |𝒙)𝑝 (𝒓 |𝒙,𝒂) [𝑟
∗] .

Estimating 𝑉 (𝜋𝑒 ) before implementing 𝜋𝑒 in an online environ-

ment is valuable because 𝜋𝑒 may perform poorly and damage user

satisfaction [4, 5, 10, 16, 17].

2.3 Existing Estimators
Here, we review existing estimators in the slate contextual bandit

setting and state their limitations.
1

Inverse Propensity Scoring. IPS [14, 20] uses the importance sam-

pling technique to estimate the policy value as follows:

𝑉IPS (𝜋𝑒 ;D) := E𝑛 [𝑤 (𝒙, 𝒂)𝑟∗] = E𝑛

[
𝑤 (𝒙, 𝒂)

𝐿∑︁
𝑙=1

𝛼𝑙𝑟𝑙

]
,

where 𝑤 (𝒙, 𝒂) := 𝜋𝑒 (𝒂 | 𝒙)/𝜋𝑏 (𝒂 | 𝒙) is the importance weight.

When the policies are factorizable, IPS becomes

𝑉IPS (𝜋𝑒 ;D) = E𝑛

[(
𝐿∏
𝑙=1

𝜋𝑒 (𝑎𝑙 | 𝒙)
𝜋𝑏 (𝑎𝑙 | 𝒙)

)
𝐿∑︁
𝑙=1

𝛼𝑙𝑟𝑙

]
.

IPS is unbiased and consistent without making any assumption on

user behavior. However, it has an extremely large variance when

the action space (|A𝐿 | or |Π𝐿 (A)|) is large [12, 13, 19, 23].

Independent Inverse Propensity Scoring. IIPS is based on the in-

dependence assumption, i.e., a user interacts with items (actions)

independently across slots [12].
2
This implies that the reward ob-

served at each slot depends only on the corresponding item and

its position, ignoring the possible interactions among the items

presented in the same slate. This assumption allows us to simplify

the slot-level mean reward function as follows.

𝑞𝑙 (𝒙, 𝒂) = E𝑟𝑙∼𝑝 (𝑟𝑙 |𝒙,𝑎𝑙 ) [𝑟𝑙 | 𝒙, 𝑎𝑙 ] .
Based on this assumption, IIPS estimates the policy value as

𝑉IIPS (𝜋𝑒 ;D) := E𝑛

[
𝐿∑︁
𝑙=1

𝑤𝑙 (𝒙, 𝑎𝑙 )𝛼𝑙𝑟𝑙

]
= E𝑛

[
𝐿∑︁
𝑙=1

(
𝜋𝑒 (𝑎𝑙 | 𝒙)
𝜋𝑏 (𝑎𝑙 | 𝒙)

)
𝛼𝑙𝑟𝑙

]
,

where𝑤𝑙 (𝒙, 𝑎𝑙 ) := 𝜋𝑒 (𝑎𝑙 | 𝒙)/𝜋𝑏 (𝑎𝑙 | 𝒙) is the importance weight

at slot 𝑙 .3

IIPS is unbiased under the independence assumption and greatly

reduces the variance of IPS. However, when this assumption is

violated, IIPS yields severe bias even if we increase the data [13].

Reward interaction Inverse Propensity Scoring. RIPS [13] assumes

that a user examines items in a ranking one-by-one from the top

position [6]. Under this cascade assumption, the reward at each posi-

tion (𝑟𝑙 ) is dependent only on items and rewards at higher positions

(𝒂
1:𝑙 , 𝒓1:𝑙−1), but is independent of the others (𝒂𝑙+1:𝐿, 𝒓𝑙+1:𝐿). Thus,

the slot-level mean reward function can be expressed as follows.

𝑞𝑙 (𝒙, 𝒂) = E𝑟𝑙∼𝑝 (𝑟𝑙 |𝒙,𝒂1:𝑙 ,𝒓1:𝑙−1) [𝑟𝑙 | 𝒙, 𝒂1:𝑙 , 𝒓1:𝑙−1] .

1
Note that the pseudoinverse (PI) estimator has also been proposed for OPE in the slate

contextual bandit setting [23, 25]. However, it assumes that only slate-level reward 𝑟 ∗

is observable, which is different from our setting. McInerney et al. [13] empirically

confirms that PI does not work in our setting. Thus, we do not consider PI.

2
In [12], the independence assumption is called the item-position model.

3𝜋 (𝑎 | 𝒙) := ∑
𝒂′ 𝜋 (𝒂′ | 𝒙)I{𝑎′𝑙 = 𝑎}, where I{·} is the indicator function.



Then, RIPS estimates the policy value as

𝑉RIPS (𝜋𝑒 ;D) := E𝑛

[
𝐿∑︁
𝑙=1

𝑤
1:𝑙 (𝒙, 𝒂1:𝑙 )𝛼𝑙𝑟𝑙

]
= E𝑛

[
𝐿∑︁
𝑙=1

(
𝑙∏

𝑙 ′=1

𝜋𝑒 (𝑎𝑙 ′ | 𝒙, 𝒂1:𝑙 ′−1)
𝜋𝑏 (𝑎𝑙 ′ | 𝒙, 𝒂1:𝑙 ′−1)

)
𝛼𝑙𝑟𝑙

]
,

where 𝑤
1:𝑙 (𝒙, 𝒂1:𝑙 ) := 𝜋𝑒 (𝒂1:𝑙 | 𝒙)/𝜋𝑏 (𝒂1:𝑙 | 𝒙) is the importance

weight at slot 𝑙 given previous actions (𝒂
1:𝑙−1).

4

RIPS is unbiased under the cascade assumption, which includes

the independence assumption of IIPS as a special case. Moreover,

RIPS has a smaller variance than IPS. However, this estimator may

still be subject to the severe variance issue, when behavior and

evaluation policies greatly diverge or the slate size is large.

We now formally investigate the variance of RIPS based on

its recursive expression. This kind of variance analysis of RIPS

is not given in the previous work [13]. For the analysis, let us

define 𝑉 𝐿+1−𝑙
RIPS

:=
∑𝐿
𝑙 ′=𝑙 (

∏𝑙 ′

𝑙 ′′=𝑙 𝑤1:𝑙 ′′ (𝑙 ′′))𝛼𝑙 ′𝑟𝑙 ′ where there are 𝐿 +
1 − 𝑙 remaining slots. Note that 𝑉 0

RIPS
:= 0 and 𝑤

1:𝑙 (𝑙) := 𝜋𝑒 (𝑎𝑙 |
𝒙, 𝒂

1:𝑙−1)/𝜋𝑏 (𝑎𝑙 | 𝒙, 𝒂1:𝑙−1). Then, for 𝑙 = 1, . . . , 𝐿, we have

𝑉 𝐿+1−𝑙
RIPS

:= 𝑤
1:𝑙 (𝑙)

(
𝛼𝑙𝑟𝑙 +𝑉 𝐿−𝑙

RIPS

)
, (1)

which corresponds to Eq.(4) of [13]. 𝑉 𝐿+1−𝑙
RIPS

estimates 𝑉 𝐿+1−𝑙
:=

E𝑙 [
∑𝐿
𝑙 ′=𝑙 𝛼𝑙 ′𝑟𝑙 ′].

5
In addition, 𝑉 𝐿

RIPS
is equivalent to 𝑉RIPS. Based on

this recursive expression, we derive the variance of RIPS.

Proposition 2.1. (Variance of RIPS) Under the cascade assump-
tion, the (conditional) variance of RIPS is recursively given by

V𝑙

(
𝑉 𝐿+1−𝑙
RIPS

)
= E𝑙

[
𝑤
1:𝑙 (𝑙)2V𝑙+1

(
𝑉 𝐿−𝑙
RIPS

)]
+ 𝛼2

𝑙
E𝑙 [𝑤1:𝑙 (𝑙)2V𝑟𝑙 (𝑟𝑙 )]

+ 2𝛼𝑙E𝑙
[
𝑤
1:𝑙 (𝑙)2 (𝑟𝑙 − 𝑞𝑙 (𝒙, 𝒂1:𝑙 ))

(
𝑉 𝐿−𝑙
RIPS
−𝑉 𝐿−𝑙

)]
+ V𝑙 (𝑤1:𝑙 (𝑙)𝑄𝑙 )

where 𝑄𝑙 = 𝑄𝑙 (𝒙, 𝒂1:𝑙 ) := 𝛼𝑙𝑞𝑙 (𝒙, 𝒂1:𝑙 ) +𝑉 𝐿−𝑙 . V𝑟𝑙 (·) denotes condi-
tional variance of 𝑟𝑙 given (𝒙, 𝒂1:𝑙 , 𝒓1:𝑙−1). We provide all the proofs
in the main text in Appendix A.

In Proposition 2.1, V𝑙 (𝑤1:𝑙 (𝑙)𝑄𝑙 ) is the most important term as its

scale is large and is recursively weighted. This becomes problematic

when the slate size is large and there is a weak overlap between

behavior and evaluation policies.

3 OUR APPROACH
In this section, we propose a new estimator for evaluating counter-

factual ranking policies.

3.1 Cascade Doubly Robust Estimator
A key insight in deriving the proposed estimator is that the causal

structure of the cascade assumption is similar to that of MDP in

RL [22]. Specifically, we can interpret the cascade assumption as

4𝜋 (𝒂1:𝑙 | 𝑥) :=
∏𝑙

𝑙′=1 𝜋 (𝑎𝑙′ | 𝒙, 𝒂1:𝑙′−1) .
5
We use E𝑙 [ ·] := E(𝒂𝑙 :𝐿,𝒓𝑙 :𝐿 )∼𝜋𝑒 (𝒂𝑙 :𝐿 |𝒙,𝒂1:𝑙−1 )𝑝 (𝒓𝑙 :𝐿 |𝒙,𝒂1:𝑙 ,𝒓1:𝑙−1 ) [ · |𝒙, 𝒂1:𝑙−1, 𝒓1:𝑙−1 ]
and V𝑙 ( ·) as the corresponding conditional variance.

a simplified MDP where we do not explicitly consider the user

context transition.

The recursive expression of RIPS in Eq. (1) leads to the recursive

expression of Cascade-DR as follows.

𝑉 𝐿+1−𝑙
CDR

:= 𝑤
1:𝑙 (𝑙)

(
𝛼𝑙𝑟𝑙 +𝑉 𝐿−𝑙

CDR
− 𝑄̂𝑙

)
+ E𝑎′

𝑙

[
𝑄̂𝑙

]
, (2)

where we introduce 𝑄̂𝑙 (an estimator of 𝑄𝑙 ) as a control variate.

CDR stands for Cascade-DR and E𝑎′
𝑙
[·] := E𝑎′

𝑙
∼𝜋𝑒 (𝑎′𝑙 |𝒙,𝒂1:𝑙−1) [·]. In-

tuitively, adding the control variate makes the scale of the first term

of Eq. (2) much smaller than Eq. (1), if 𝑄̂𝑙 is accurate. Thus, we ex-

pect a variance reduction, which we formally discuss in Section 3.2.

We now derive Cascade-DR by solving the recursive expression:

𝑉CDR (𝜋𝑒 ;D, 𝑄̂) := E𝑛

[
𝐿∑︁
𝑙=1

(
𝑤
1:𝑙

(
𝛼𝑙𝑟𝑙 − 𝑄̂𝑙

)
+𝑤

1:𝑙−1E𝑎′
𝑙

[
𝑄̂𝑙

] )]
,

where𝑤
1:𝑙 := 𝑤

1:𝑙 (𝒙, 𝒂1:𝑙 ).
To use Cascade-DR, we have to derive 𝑄̂𝑙 from logged bandit

data. We can take advantage of the recursive structure of the reward

and obtain 𝑄̂𝑙 as follows.

𝑄̂𝑙 ← argmin

𝑄𝑙

E𝑛

[
𝑤
1:𝑙

(
𝑄𝑙 (𝒙, 𝒂1:𝑙 )

−
(
𝛼𝑙𝑟𝑙 + E𝑎′

𝑙+1

[
𝑄̂𝑙+1 (𝒙, 𝒂′1:𝑙+1)

] ))2]
,

where we set 𝑄̂𝐿+1 = 0. 𝑤
1:𝑙 is used to mitigate the bias from the

baseline estimation.

3.2 Theoretical Analysis
Cascade-DR has some desirable statistical properties. We first show

that Cascade-DR is unbiased when the cascade assumption holds.

Proposition 3.1. (Unbiasedness of Cascade-DR) Under the cas-
cade assumption, Cascade-DR is statistically unbiased, i.e., for any
given 𝜋𝑒 and 𝑄̂ , we have ED

[
𝑉CDR (𝜋𝑒 ;D, 𝑄̂)

]
= 𝑉 (𝜋𝑒 ).

Unbiasedness under the cascade assumption is a desirable statistical

property, as the cascade assumption is more realistic compared to

the independence assumption of IIPS. Specifically, unbiasedness

under the cascade assumption is a sufficient condition for unbi-

asedness under the independence assumption. Therefore, Proposi-

tion 3.1 ensures that the proposed estimator is unbiased in more

cases compared to IIPS.

We also show that Cascade-DR has a preferable variance.

Theorem 3.2. (Variance of Cascade-DR) Under the cascade as-
sumption, the (conditional) variance of Cascade-DR is recursively
given by

V𝑙

(
𝑉 𝐿+1−𝑙
CDR

)
= E𝑙

[
𝑤
1:𝑙 (𝑙)2V𝑙+1

(
𝑉 𝐿−𝑙
CDR

)]
+ 𝛼2

𝑙
E𝑙 [𝑤1:𝑙 (𝑙)2V𝑟𝑙 (𝑟𝑙 )]

+ 2𝛼𝑙E𝑙
[
𝑤
1:𝑙 (𝑙)2 (𝑟𝑙 − 𝑞𝑙 (𝒙, 𝒂1:𝑙 ))

(
𝑉 𝐿−𝑙
CDR
−𝑉 𝐿−𝑙

)]
+ V𝑙 (𝑤1:𝑙 (𝑙)Δ𝑙 )

where Δ𝑙 := 𝑄𝑙 − 𝑄̂𝑙 is the estimation error of 𝑄̂ . Note that the
variance of Cascade-DR is equivalent to that of RIPS when 𝑄̂𝑙 =

0, ∀𝑙 = 1, . . . , 𝐿.



Theorem 3.2 implies that Cascade-DR improves the last term from

V𝑙 (𝑤1:𝑙 (𝑙)𝑄𝑙 ) toV𝑙 (𝑤1:𝑙 (𝑙)Δ𝑙 ) compared to RIPS (see Proposition 2.1).

Specifically, if |𝑄𝑙 − 𝑄̂𝑙 | < 𝑄𝑙 ,∀𝑙 = 1, . . . , 𝐿, Cascade-DR achieves a

smaller variance than RIPS. The condition for variance reduction

(i.e., |𝑄𝑙 − 𝑄̂𝑙 | < 𝑄𝑙 ) can also be represented as 0 < 𝑄̂𝑙 < 2𝑄𝑙 ,

suggesting that the estimation error of 𝑄̂𝑙 should be within ±100%.
Therefore, we argue that Cascade-DR is likely to achieve a smaller

variance than RIPS.

4 EXPERIMENTS: SYNTHETIC DATA
In this section, we empirically compare the proposed estimator

with the existing estimators using synthetic data.
6

4.1 Setup
Our synthetic experiment is based on OpenBanditPipeline (OBP)7

provided by Saito et al. [16]. OBP is an open-source toolkit for OPE,

which includes synthetic data generation modules for the slate

contextual bandit setting. We synthesize datasets based on various

user behaviors to evaluate how the estimators perform under differ-

ent assumptions. We also vary the slate size and evaluation policy

to evaluate the estimators’ robustness to possible configuration

changes [18]. Below, we describe our experimental setup in detail.

Basic synthetic setting. To generate synthetic data, we need

to sample (𝒙, 𝒂, 𝒓). First, we randomly generate five-dimensional

contexts (𝑑 = 5), independently and normally distributed with zero

mean. Then, we set |A| = 5 and 𝛼𝑙 = 1,∀𝑙 = 1, . . . , 𝐿. Finally,

we sample slot-level reward 𝑟𝑙 from the Bernoulli distribution as

𝑟𝑙 ∼ 𝐵𝑒𝑟𝑛(𝑞𝑙 (𝒙, 𝒂)). Note that 𝑞𝑙 (𝒙, 𝒂) is the slot-level mean reward

function. Below, we describe how to define 𝑞𝑙 (𝒙, 𝒂) (= E[𝑟𝑙 | 𝒙, 𝒂])
to simulate different user behavior assumptions.

Reward structures. When generating synthetic data, we use

three different reward structures, standard, cascade, and indepen-
dence. These reward structures correspond to the user behavior

assumptions of different estimators as shown in Table 1.

First, we define the following slot-level base reward function.

𝑞𝑙 (𝒙, 𝑎𝑙 ) := 𝜃⊤𝑎𝑙 𝒙 + 𝑏𝑎𝑙 ,
where 𝜃𝑎𝑙 is a parameter vector sampled from the standard normal

distribution. 𝑏𝑎𝑙 is a bias term that corresponds to action 𝑎𝑙 .

Next, we define the general form of the synthetic slot-level mean

reward function as follows.

𝑞𝑙 (𝒙, 𝒂) := 𝜎 (𝑞𝑙 (𝒙, 𝑎𝑙 ) + 𝐹 (𝒙, 𝒂)) , (3)

where 𝜎 (𝑧) := 1/(1 + exp(−𝑧)) is the sigmoid function. Note here

that 𝑞𝑙 (𝒙, 𝑎𝑙 ) depends only on the action presented at slot 𝑙 , while

𝐹 (𝒙, 𝒂) depends on the whole slate 𝒂. We use three different 𝐹 (·, ·)
to switch the reward structures as follows.

𝐹 (𝒙, 𝒂) =


∑
𝑘≠𝑙 𝐺 (𝑘, 𝑙) (standard)∑
𝑘<𝑙 𝐺 (𝑘, 𝑙) (cascade)

0 (independence)

,

where𝐺 (𝑘, 𝑙) defines the interaction between actions presented at

slots 𝑘 and 𝑙 . The simplest independence reward structure assumes

6
Cascade-DR is implemented in OBP as obp.ope.SlateCascadeDoublyRobust. Our
experimental code is available at https://github.com/aiueola/wsdm2022-cascade-dr.

7
https://github.com/st-tech/zr-obp

that the slot-level reward depends only on the corresponding slot.

Therefore, there is no interactions among actions in the slate, and

𝑞𝑙 (𝒙, 𝒂) is derived directly from 𝑞𝑙 (𝒙, 𝑎𝑙 ). In contrast, the standard
and cascade reward structures assume that there are some interac-

tions among actions presented in the same slate. Specifically, the

standard reward structure assumes that 𝑞𝑙 (𝒙, 𝒂) depends on all the

other actions in the slate (i.e., ∀𝑎𝑘 (𝑘 ≠ 𝑙)). On the other hand, when

the reward structure is cascade, 𝑞𝑙 (𝒙, 𝒂) contains interactions from
only the actions presented at higher slots (i.e., ∀𝑘 < 𝑙). This is

because the cascade assumption indicates that a user examines the

slots sequentially from top to bottom.

Next, 𝐺 (𝑘, 𝑙) defines the level of interaction between two slots.

We use two different functions as 𝐺 (·, ·). The first one is additive.
It assumes that the slot-level reward is additively affected by the

co-occurrence of the two actions as 𝐺 (𝑘, 𝑙) = W(𝑎𝑘 , 𝑎𝑙 ). Here,W
is |A| × |A| symmetric matrix which defines how an action affects

the reward of the other actions in the same slate. Another variant

of 𝐺 (𝑘, 𝑙) is decay. It assumes that the slot-level reward is affected

by the expected rewards of neighboring actions. For example, an

item may be less likely to be clicked if the neighboring items have

high click probabilities. We can simulate this situation by defining

𝐺 (·, ·) as 𝐺 (𝑘, 𝑙) = −ℎ(𝑘, 𝑙)𝑞𝑘 (𝒙, 𝑎𝑘 ), where ℎ(𝑘, 𝑙) is a function to

define the decay effect. Specifically, we use ℎ(𝑘, 𝑙) = ( |𝑘 − 𝑙 | + 1)−1.

Behavior and evaluation policies. We use factorizable con-

textual policies as behavior and evaluation policies. Thus, these

policies can choose the same item more than twice in a slate.

We first define a behavior policy as follows.

𝜋𝑏 (𝒙, 𝒂) =
𝐿∏
𝑙=1

𝜋𝑏 (𝒙, 𝑎𝑙 ) =
𝐿∏
𝑙=1

softmax (𝑓𝑏 (𝒙, 𝑎𝑙 )) , (4)

where 𝑓𝑏 (𝒙, 𝑎𝑙 ) = 𝜃⊤𝑎𝑙 𝒙 + 𝑏𝑎𝑙 . We sample both 𝜃𝑎𝑙 and 𝑏𝑎𝑙 from the

standard uniform distribution.

We then generate an evaluation policy based on the (pre-defined)

behavior policy as follows.

𝜋𝑒 (𝒙, 𝒂) =
𝐿∏
𝑙=1

softmax (𝜆 · 𝑓𝑏 (𝒙, 𝑎𝑙 ) + (1 − |𝜆 |)) , (5)

where 𝜆 ∈ [−1.0, 1.0) is an experimental hyperparameter to control

the similarity between 𝜋𝑏 and 𝜋𝑒 . A positive value of 𝜆 leads to an

evaluation policy that is similar to the behavior policy. On the other

hand, a negative 𝜆 leads to an evaluation policy that is dissimilar to

the behavior policy. When 𝜆 = 0.0, the evaluation policy is identical

to the uniform random policy.

Compared estimators. We compare IPS, IIPS, RIPS, andCascade-

DR (our proposal). We use the true action choice probabilities of the

behavior policy 𝜋𝑏 to define the above estimators. To obtain 𝑄̂𝑙 of

Cascade-DR, we use a Decision Tree
8
implemented in scikit-learn9.

4.2 Study Design
We conduct three experiments to evaluate how the performance

of the estimators changes with different (i) data size (𝑛), (ii) slate
size (𝐿), and (iii) policy similarity (𝜆).

8
sklearn.tree.DecisionTreeRegressor(max_depth=3, random_state=12345)

9
https://github.com/scikit-learn/scikit-learn

https://github.com/aiueola/wsdm2022-cascade-dr
https://github.com/st-tech/zr-obp
https://github.com/scikit-learn/scikit-learn


Table 1: Relationship among user behavior assumptions, OPE estimators, and reward structures

Reward Structures

User Behavior Assumptions OPE Estimators standard cascade independence

none IPS " " "

cascade RIPS, Cascade-DR (ours) % " "

independence IIPS % % "

Note:"means that the user behavior assumption captures the reward structure of the data generating process. When the user behavior

assumption captures the reward structure, the corresponding OPE estimators are unbiased.

Table 2: Choices of experimental configurations in the synthetic experiment

Configurations Choices Notations

data size 𝑛 ∈ {250, 500, 1000, 2000, 4000}

Φ (to define D)

slate size 𝐿 ∈ {3, 4, 5, 6, 7}

reward_structure

reward_structure (𝐹 ) ∈ {standard, cascade, independence}
interaction_function (𝐺) ∈ {additive, decay}

policy similarity 𝜆 ∈ {−0.8,−0.6,−0.4,−0.2, 0.0, 0.2, 0.4, 0.6, 0.8} Λ (to define 𝜋𝑒 )

Specifically, to investigate the effect of data size (𝑛), we fix

slate size 𝐿 = 5 and vary 𝑛 ∈ {250, 500, 1000, 2000, 4000}. Then, to
see how the estimators perform with different slate size (𝐿), we
fix data size 𝑛 = 1000 and vary slate size 𝐿 ∈ {3, . . . , 7}. Finally,
we fix data size 𝑛 = 1000 and vary the policy similarity (𝜆) as
𝜆 ∈ {−0.8,−0.6, . . . , 0.8}. During the experiments, we randomly

sample the other configurations in Table 2 to identify an estimator

robust to possible configuration changes as done in Saito et al. [18].

For experiments (i)-(iii), we apply Algorithm 1 to each estimator

and obtain the set of squared errors (SE) Z with random seeds

𝑠 ∈ {0, . . . , 9999}(= S). Specifically, for every random seed 𝑠 , we

first sample experimental configurations 𝜙 ∈ Φ and 𝜆 ∈ Λ. Φ
and Λ are defined in Table 2. Then, we generate synthetic data

D and evaluation policy 𝜋𝑒 based on sampled 𝜙 and 𝜆. Finally,

we calculate SE as SE(𝑉 ) = (𝑉 (𝜋𝑒 ) −𝑉 (𝜋𝑒 ;D))2. After obtaining
Z from Algorithm 1, we evaluate the performance of estimators

by mean-squared-error (MSE), MSE(𝑉 ) = |Z|−1 ∑
𝑧∈Z 𝑧. A lower

value of MSE indicates that the estimator is more accurate.

4.3 Results
Figures 2-4 compare the MSE of the estimators relative to that

of Cascade-DR (i.e., MSE(𝑉 )/MSE(𝑉CDR)). In the following, we

discuss the results of the three experiments (i)-(iii).

(i) How do the estimators performwith different data sizes?
Figure 2 shows how the estimators perform as the data size 𝑛 grows.

The result indicates that Cascade-DR is the most stable, achieving

the best or the second-best MSE in all reward structures and data

sizes. In particular, Cascade-DR consistently outperforms RIPS,

empirically verifying its variance reduction property.

Specifically, when the reward structure is standard, the result
demonstrates that the estimators’ performance depends heavily on

the data size. When the data size is large, the bias is the dominant

term in the MSE of the estimators. In such a situation, IPS performs

Algorithm 1 Experimental Procedure with Synthetic Data

Input: SyntheticDataGenerator, EvaluationPolicyFunction, esti-
mator to be evaluated 𝑉 , set of data configurations Φ (i.e., set

of data size 𝑛, slate size 𝐿, reward structure 𝐹 , and interaction

function 𝐺), set of policy similarity Λ, set of random seeds S
Output: set of squared errors (SE),Z
1: Z ← ∅
2: for 𝑠 ∈ S do
3: 𝜙, 𝜆 ← Unif (Φ,Λ; 𝑠)
4: 𝜋𝑏 ,D ← SyntheticDataGenerator(𝜙, 𝑠) (Eq.(3), Eq.(4), etc.)
5: 𝜋𝑒 ← EvaluationPolicyFunction(𝜋𝑏 , 𝜆) (Eq.(5))
6: SE(𝑉 ) = (𝑉 (𝜋𝑒 ) −𝑉 (𝜋𝑒 ;D))2
7: Z ← Z ∪ {SE(𝑉 )}
8: end for

the best, as it is unbiased while the others are not. When the data

size is smaller, however, IPS suffers from large variance and has

the worst performance, as the variance plays a crucial role in a

small sample setting. On the other hand, Cascade-DR performs

the best on smaller data, leveraging the cascade assumption and

baseline estimator to reduce the variance. In contrast, IIPS suffers

from serious bias because of its strong assumption and performs

poorly with any data size. When the reward structure is cascade, we
observe a similar trend with that of standard. The difference is that
Cascade-DR and RIPS perform better than IPS even with large data

sizes (e.g., 𝑛 = 2000, 4000). This is because, in addition to IPS, both

Cascade-DR and RIPS are unbiased in this setting. Therefore, the

difference in their performances is attributed to the difference in

their variance. Finally, when the reward structure is independence,
IIPS performs the best followed by Cascade-DR. This result is be-

cause all estimators are unbiased and only the variance matters in

this setting. However, the independence assumption of IIPS rarely



reward structure

standard cascade independence

Figure 2: Estimators’ performance comparison with different data size 𝑛

Figure 3: Estimators’ performance comparison with different slate size 𝐿

Figure 4: Estimators’ performance comparison with different policy similarity 𝜆

Note: The plots compare the MSE of the estimators relative to that of Cascade-DR (i.e., MSE(𝑉̂ )/MSE(𝑉̂CDR)). A lower (relative) MSE indicates

that the estimator is more accurate.

holds in real-life scenarios. Thus, we argue that the results of the

standard and cascade cases are more practically relevant.

(ii) Howdo the estimators performwith different slate sizes?
Figure 3 shows the estimators’ performances with varying slate

size 𝐿. The result indicates that Cascade-DR performs better than

the others as 𝐿 becomes larger when the reward structure is in-
dependence. When the reward structure is cascade, however, we
observe that the improvement given by Cascade-DR becomes less

impressive with a large slate size 𝐿. We attribute this observation

to the accuracy of the baseline estimator 𝑄̂ . When the underlying

reward structure is complex (cascade or standard) and the slate

size is large, we observe that ensuring the accuracy of the baseline

estimator is more difficult and the benefit of using Cascade-DR

is limited. Nonetheless, Cascade-DR is still the best estimator in

almost all settings, but the results also suggest that there is room

for improvement with respect to the baseline estimator.

(iii) How do the estimators perform with different evalua-
tion policy similarities? We finally validate the effect of policy

similarity 𝜆 on the estimators’ performance. Figure 4 shows the

results with varying policy similarity 𝜆. It is clear from the figures

that Cascade-DR provides a large improvement when the behavior

and evaluation policies greatly diverge. When an evaluation policy



differs greatly from the behavior policy (e.g., 𝜆 = −0.8,−0.6), the
importance weights blow up for both IPS and RIPS. These estima-

tors therefore suffer from inflated variances. Moreover, in standard
and cascade, IIPS yields severe bias especially when there is a weak

overlap between the behavior and evaluation policies, as its inde-

pendence assumption is greatly violated. IIPS performs better than

our estimator when the reward structure is independence, however,
the reward structure can often be more complex in reality.

Summary of the experimental findings. In the synthetic ex-

periments, we observe that Cascade-DR works better than the other

existing estimators when the reward structure is standard or cas-
cade. It is reasonable that Cascade-DR is the best when the cascade

assumption holds, as it is unbiased and has desirable variance. More-

over, even when the cascade assumption does not hold (i.e., the

reward structure is standard and Cascade-DR is biased), Cascade-

DR works better than IPS when the data size is small, as it balances

the bias and variance well. Moreover, we observe that Cascade-DR

is robust to divergence in the behavior and evaluation policies. IIPS

is the best when the independence assumption is valid, but this

assumption rarely holds in practice. These observations lead us to

conclude that the proposed estimator enables a more accurate and

reliable OPE of ranking policies.

5 EXPERIMENTS: REAL-WORLD DATA
In this section, we compare the estimators using real-world data.

Data Collection. To verify the OPE performance of the pro-

posed estimator in a real-world application, we conducted a data col-

lection experiment on an e-commerce platform. This platform uses

data-driven algorithms to optimize a ranking of modules to show-

case a set of products.
10

We collected two logged bandit datasetsD𝐴

and D𝐵 by randomly assigning two factorizable policies, 𝜋𝐴 and

𝜋𝐵 , to the users on the platform. Each dataset contains 𝑛𝐴 = 2153

and 𝑛𝐵 = 1968 observations. The data sizes are small, because this

is an initial attempt to implement OPE for the platform. Note that,

in this application, 𝒙 is a five-dimensional user context vector, 𝒂
is a list of products presented to the user (where |A| = 2), 𝒓 is a
binary click indicator, and the slate size is 𝐿 = 6.

Experimental procedure. We use D𝐴 to estimate the perfor-

mance of 𝜋𝐵 . This means that, in this real-world experiment, 𝜋𝐴 is

the behavior policy and 𝜋𝐵 is the evaluation policy. We first approx-

imate the ground-truth policy value of the evaluation policy𝑉 (𝜋𝐵).
We do this by on-policy estimation, i.e., 𝑉 (𝜋𝐵) ≈ 𝑉on (𝜋𝐵 ;D𝐵) =
E𝑛𝐵
[𝑟∗]. We then replicate logged bandit data D𝐴

′
by bootstrap

sampling from D𝐴 with 20 different random seeds. We obtain a

distribution of the estimators’ performance by repeating the exper-

iment with different bootstrapped samples. Finally, we estimate the

policy value of 𝜋𝐵 with each estimator and calculate the squared

error SE(𝑉 ) = (𝑉on (𝜋𝐵 ;D𝐵)−𝑉 (𝜋𝐵 ;D𝐴
′))2 as the estimator’s per-

formance measure. A lower value of SE indicates that the estimator

is more accurate.

Results. Figure 5 compares the estimators’ SE with 20 different

random seeds. The result demonstrates that Cascade-DR clearly

10
Figure 6 in Appendix illustrates an interface of modules (slate action) in our

application.

Figure 5: Box plots of the estimators’ performance (log-
scaled squared error) in the real-world experiment

outperforms the existing estimators, achieving lower SEs in every

quartile. In addition, Cascade-DR improves the worst case perfor-

mance of the other estimators by over 50%. The results demonstrate

that Cascade-DR is able to provide more accurate and stable OPE

than existing estimators in the real-world application.

6 CONCLUSION AND FUTUREWORK
In this paper, we studied OPE for ranking policies in the slate contex-

tual bandit setting. First, we investigated the statistical properties of

the existing estimators and discussed their limitations. In particular,

we showed that RIPS can have a large variance, particularly when

there is a weak overlap between behavior and evaluation policies

and the slate size is large. To overcome the variance issue of RIPS,

we propose Cascade-DR, leveraging the Markov structure of the

cascade assumption. The proposed estimator reduces the variance

by exploiting the baseline estimator and performing propensity

weighting only on its residual. We showed that Cascade-DR satis-

fies unbiasedness under the cascade assumption. This ensures that

Cascade-DR achieves a smaller bias compared to IIPS. Moreover, we

proved that Cascade-DR can reduce the variance of RIPS under a

reasonable assumption on the baseline estimator. Empirical results

demonstrate that the proposed estimator leads to a superior OPE

of ranking policies in both synthetic and real-world data.

In future work, we plan to explore methods to conduct estima-

tor selection with logged bandit data. As we have discussed in

Section 4.3, an accurate estimator can change depending on the

data generating process such as reward structures. Therefore, es-

tablishing a reliable data-driven method to identify an appropriate

estimator will be a valuable research direction.

ACKNOWLEDGMENTS
The authors would like to thank Richard Liu, Koichi Takayama,

Kazuki Mogi, and Masahiro Nomura, for their helpful feedback.

Additionally, we would like to thank the anonymous reviewers for

their constructive reviews and discussions.



REFERENCES
[1] Alina Beygelzimer and John Langford. 2009. The Offset Tree for Learning with

Partial Labels. In Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. 129–138.

[2] Miroslav Dudík, Dumitru Erhan, John Langford, and Lihong Li. 2014. Doubly

Robust Policy Evaluation and Optimization. Statist. Sci. 29, 4 (2014), 485–511.
[3] Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. 2018. More

Robust Doubly Robust Off-Policy Evaluation. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, Vol. 80. PMLR, 1447–1456.

[4] Alexandre Gilotte, Clément Calauzènes, Thomas Nedelec, Alexandre Abraham,

and Simon Dollé. 2018. Offline A/B Testing for Recommender Systems. In Pro-
ceedings of the 11th ACM International Conference on Web Search and Data Mining.
198–206.

[5] Alois Gruson, Praveen Chandar, Christophe Charbuillet, James McInerney,

Samantha Hansen, Damien Tardieu, and Ben Carterette. 2019. Offline Evaluation

to Make Decisions About Playlist Recommendation Algorithms. In Proceedings of
the 12th ACM International Conference on Web Search and Data Mining. 420–428.

[6] Fan Guo, Chao Liu, and Yi Min Wang. 2009. Efficient Multiple-Click Models

in Web Search. In Proceedings of the 2nd ACM International Conference on Web
Search and Data Mining. 124–131.

[7] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated Gain-Based Evaluation

of IR Techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002),
422–446.

[8] Nan Jiang and Lihong Li. 2016. Doubly Robust Off-Policy Value Evaluation for

Reinforcement Learning. In Proceedings of the 33rd International Conference on
Machine Learning, Vol. 48. PMLR, 652–661.

[9] Nathan Kallus, Yuta Saito, and Masatoshi Uehara. 2021. Optimal Off-Policy

Evaluation fromMultiple Logging Policies. In Proceedings of the 38th International
Conference on Machine Learning, Vol. 139. PMLR, 5247–5256.

[10] Haruka Kiyohara, Kosuke Kawakami, and Yuta Saito. 2021. Accelerating Offline

Reinforcement Learning Application in Real-Time Bidding and Recommendation:

Potential Use of Simulation. arXiv preprint arXiv:2109.08331 (2021).
[11] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. 2020. Offline Rein-

forcement Learning: Tutorial, Review, and Perspectives on Open Problems. arXiv
preprint arXiv:2005.01643 (2020).

[12] Shuai Li, Yasin Abbasi-Yadkori, Branislav Kveton, S Muthukrishnan, Vishwa

Vinay, and Zheng Wen. 2018. Offline Evaluation of Ranking Policies with Click

Models. In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 1685–1694.

[13] James McInerney, Brian Brost, Praveen Chandar, Rishabh Mehrotra, and Ben-

jamin Carterette. 2020. Counterfactual Evaluation of Slate Recommendations

with Sequential Reward Interactions. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. 1779–1788.

[14] Doina Precup, Richard S. Sutton, and Satinder P. Singh. 2000. Eligibility Traces for

Off-Policy Policy Evaluation. In Proceedings of the 17th International Conference
on Machine Learning. 759–766.

[15] Yuta Saito. 2020. Doubly Robust Estimator for Ranking Metrics with Post-Click

Conversions. In 14th ACM Conference on Recommender Systems. 92–100.
[16] Yuta Saito, Shunsuke Aihara, Megumi Matsutani, and Yusuke Narita. 2020. Open

Bandit Dataset and Pipeline: Towards Realistic and Reproducible Off-Policy

Evaluation. arXiv preprint arXiv:2008.07146 (2020).
[17] Yuta Saito and Thorsten Joachims. 2021. Counterfactual Learning and Evaluation

for Recommender Systems: Foundations, Implementations, and Recent Advances.

In Proceedings of the 15th ACM Conference on Recommender Systems. 828–830.
[18] Yuta Saito, Takuma Udagawa, Haruka Kiyohara, Kazuki Mogi, Yusuke Narita,

and Kei Tateno. 2021. Evaluating the Robustness of Off-Policy Evaluation. In

Proceedings of the 15th ACM Conference on Recommender Systems. 114–123.
[19] Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato Sakata, and Kazuhide Nakata.

2020. Unbiased recommender learning from missing-not-at-random implicit

feedback. In Proceedings of the 13th International Conference on Web Search and
Data Mining. 501–509.

[20] Alex Strehl, John Langford, Lihong Li, and Sham M Kakade. 2010. Learning from

Logged Implicit Exploration Data. In Advances in Neural Information Processing
Systems, Vol. 23. 2217–2225.

[21] Yi Su, Maria Dimakopoulou, Akshay Krishnamurthy, and Miroslav Dudík. 2020.

Doubly Robust Off-Policy Evaluation with Shrinkage. In Proceedings of the 37th
International Conference on Machine Learning, Vol. 119. PMLR, 9167–9176.

[22] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[23] Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miro Dudik, John

Langford, Damien Jose, and Imed Zitouni. 2017. Off-Policy Evaluation for Slate

Recommendation. In Advances in Neural Information Processing Systems, Vol. 30.
3632–3642.

[24] Philip Thomas and Emma Brunskill. 2016. Data-Efficient Off-Policy Policy Evalu-

ation for Reinforcement Learning. In Proceedings of the 33rd International Confer-
ence on Machine Learning, Vol. 48. PMLR, 2139–2148.

[25] Nikos Vlassis, Fernando Amat Gil, and Ashok Chandrashekar. 2021. Off-Policy

Evaluation of Slate Policies under Bayes Risk. arXiv preprint arXiv:2101.02553
(2021).



Figure 6: Modules as a slate action in the real-world data
Note: This figure illustrates a ranking of modules in the e-commerce

platform used in our real-world experiment. A "Module" indicates a

category of products, such as "Recommended items" or "Campaign

information". A factorizable policy chooses which module to present

at each slot to maximize the number of clicks observed in a ranking.

A OMITTED PROOFS
A.1 Proof of Proposition 3.1

Proof. To prove the unbiasedness of Cascade-DR, we first show

the recursive structure of the expectation of Cascade-DR. Note

that we use E𝑏 (𝑙) [·] := E(𝑎𝑙 ,𝑟𝑙 )∼𝜋𝑏 (𝑎𝑙 |𝒙,𝒂1:𝑙−1)𝑝 (𝑟𝑙 |𝒙,𝒂1:𝑙 ,𝒓1:𝑙−1) [· |
𝒙, 𝒂

1:𝑙−1, 𝒓1:𝑙−1] to denote the expectation over 𝜋𝑏 and E𝑒 (𝑙) [·] :=
E(𝑎𝑙 ,𝑟𝑙 )∼𝜋𝑒 (𝑎𝑙 |𝒙,𝒂1:𝑙−1)𝑝 (𝑟𝑙 |𝒙,𝒂1:𝑙 ,𝒓1:𝑙−1) [· | 𝒙, 𝒂1:𝑙−1, 𝒓1:𝑙−1] to denote

that over 𝜋𝑒 .

E𝑏 (𝑙)
[
E𝑏 (𝑙+1)

[
· · ·E𝑏 (𝐿)

[
𝑉 𝐿+1−𝑙
CDR

] ] ]
= E𝑏 (𝑙)

[
E𝑏 (𝑙+1)

[
· · ·E𝑏 (𝐿)

[
𝜋𝑒 (𝑎𝑙 | 𝒙, 𝒂1:𝑙−1)
𝜋𝑏 (𝑎𝑙 | 𝒙, 𝒂1:𝑙−1)

(
𝛼𝑙𝑟𝑙 +𝑉 𝐿−𝑙

CDR
− 𝑄̂𝑙

)
+ E𝑎′

𝑙

[
𝑄̂𝑙

] ] ] ]
= E𝑏 (𝑙)

[
𝜋𝑒 (𝑎𝑙 | 𝒙, 𝒂1:𝑙−1)
𝜋𝑏 (𝑎𝑙 | 𝒙, 𝒂1:𝑙−1)

(
𝛼𝑙𝑟𝑙 +

(
E𝑏 (𝑙+1)

[
· · ·E𝑏 (𝐿)

[
𝑉 𝐿−𝑙
CDR

] ] )
− 𝑄̂𝑙

)
+ E𝑎′

𝑙

[
𝑄̂𝑙

] ]
= E𝑒 (𝑙)

[(
𝛼𝑙𝑟𝑙 +

(
E𝑏 (𝑙+1)

[
· · ·E𝑏 (𝑙+1)

[
𝑉 𝐿−𝑙
CDR

] ] )
− 𝑄̂𝑙

)
+ 𝑄̂𝑙

]
= E𝑒 (𝑙)

[
𝛼𝑙𝑟𝑙 +

(
E𝑏 (𝑙+1)

[
· · ·E𝑏 (𝐿)

[
𝑉 𝐿−𝑙
CDR

] ] )]
(6)

Then, we derive the unbiasedness of Cascade-DR under the cascade

assumption as follows.

E
[
𝑉CDR (𝜋𝑒 ;D, 𝑄̂)

]
= E(𝒙,𝒂,𝒓 )∼𝑝 (𝒙)𝜋𝑏 (𝒂 |𝒙)𝑝 (𝒓 |𝒙,𝒂)

[
𝑉CDR

]
(7a)

= E𝒙∼𝑝 (𝒙)
[
E𝑏 (1)

[
E𝑏 (2)

[
· · ·E𝑏 (𝐿)

[
𝑉 𝐿+1−𝑙
CDR

] ] ] ]
(7b)

= E𝒙∼𝑝 (𝒙)
[
E𝑒 (1)

[
𝛼1𝑟1 + E𝑒 (2)

[
𝛼2𝑟2+

· · ·E𝑒 (𝐿)
[
𝛼𝐿𝒓𝐿 +𝑉 0

] ] ] ]
(7c)

= E(𝒙,𝒂,𝒓 )∼𝑝 (𝒙)𝜋𝑒 (𝒂 |𝒙)𝑝 (𝒓 |𝒙,𝒂)

[
𝐿∑︁
𝑙=1

𝛼𝑙𝑟𝑙

]
= 𝑉 (𝜋𝑒 )

Note that from Eq. (7a) to Eq. (7b), we use the recursive structure

of the cascade assumption. From Eq. (7b) to Eq. (7c), we use Eq. (6).

The proof also uses 𝑉 0 = 0. □

A.2 Proof of Proposition 2.1 and Theorem 3.2
Below, we provide the proof of Theorem 3.2. Note that Proposi-

tion 2.1 is implied by letting 𝑄̂ = 0 in Theorem 3.2.

Proof.

V𝑙

(
𝑉 𝐿+1−𝑙
CDR

)
= E𝑙

[(
𝑉 𝐿+1−𝑙
CDR

−𝑉 𝐿+1−𝑙
)
2

]
= E𝑙

[(
𝑉 𝐿+1−𝑙
CDR

)
2

]
−

(
𝑉 𝐿+1−𝑙

)
2

= E𝑙

[(
𝑤
1:𝑙 (𝑙)

(
𝛼𝑙𝑟𝑙 +𝑉 𝐿−𝑙

CDR
− 𝑄̂𝑙

)
+ E𝑎′

𝑙

[
𝑄̂𝑙

] )2
−

(
𝑉 𝐿+1−𝑙

)
2

]
(8a)

= E𝑙

[(
𝑤
1:𝑙 (𝑙)

(
𝛼𝑙 (𝑟𝑙 − 𝑞𝑙 (𝒙, 𝒂1:𝑙 )) +

(
𝑉 𝐿−𝑙
CDR
−𝑉 𝐿−𝑙

)
+

(
𝑄𝑙 − 𝑄̂𝑙

))
+E𝑎′

𝑙

[
𝑄̂𝑙

] )2
−

(
𝑉 𝐿+1−𝑙

)
2

]
(8b)

= E𝑙

[(
𝑤
1:𝑙 (𝑙)

(
𝛼𝑙 (𝑟𝑙 − 𝑞𝑙 (𝒙, 𝒂1:𝑙 )) +

(
𝑉 𝐿−𝑙
CDR
−𝑉 𝐿−𝑙

))
+

(
𝑤
1:𝑙 (𝑙)Δ𝑙 + E𝑎′

𝑙

[
𝑄̂𝑙

] ))2
−

(
𝑉 𝐿+1−𝑙

)
2

]
(8c)

= E𝑙
[
(𝑤

1:𝑙 (𝑙) (𝛼𝑙 (𝑟𝑙 − 𝑞𝑙 (𝒙, 𝒂1:𝑙 ))))2
]

+ E𝑙
[(
𝑤
1:𝑙 (𝑙)

(
𝑉 𝐿−𝑙
CDR
−𝑉 𝐿−𝑙

))
2

]
+ 2E𝑙

[
𝑤
1:𝑙 (𝑙)2 (𝛼𝑙 (𝑟𝑙 − 𝑞𝑙 (𝒙, 𝒂1:𝑙 )))

(
𝑉 𝐿−𝑙
CDR
−𝑉 𝐿−𝑙

)]
(8d)

+ E𝑙
[(
𝑤
1:𝑙 (𝑙)Δ𝑙 + E𝑎′

𝑙

[
𝑄̂𝑙

] )2
−

(
𝑉 𝐿+1−𝑙

)
2

]
= 𝛼2

𝑙
E𝑙

[
𝑤
1:𝑙 (𝑙)2V𝑟𝑙 (𝑟𝑙 )

]
+ E𝑙

[
𝑤
1:𝑙 (𝑙)2V𝑙+1

(
𝑉 𝐿−𝑙
CDR

)]
+ 2𝛼𝑙E𝑙

[
𝑤
1:𝑙 (𝑙)2 (𝑟𝑙 − 𝑞𝑙 (𝒙, 𝒂1:𝑙 ))

(
𝑉 𝐿−𝑙
CDR
−𝑉 𝐿−𝑙

)]
+ V𝑙 (𝑤1:𝑙 (𝑙)Δ𝑙 )

Note that under the cascade assumption,

𝑞𝑙 (𝒙, 𝒂) = 𝑞𝑙 (𝒙, 𝒂1:𝑙 ) = E𝑟𝑙∼𝑝 (𝑟𝑙 |𝒙,𝒂1:𝑙 ,𝒓1:𝑙−1) [𝑟𝑙 | 𝒙, 𝒂1:𝑙 , 𝒓1:𝑙−1],
which is independent of 𝒂𝑙+1:𝐿 . From Eq. (8a) to Eq. (8b), we use𝑄𝑙 =

𝛼𝑙𝑞𝑙 (𝒙, 𝒂1:𝑙 ) +𝑉 𝐿−𝑙
. From Eq. (8c) to Eq. (8d), we use conditional

independence between𝑤
1:𝑙 (𝑙) (𝛼𝑙 (𝑟𝑙 −𝑞𝑙 (𝒙, 𝒂1:𝑙 )) + (𝑉 𝐿−𝑙

CDR
−𝑉 𝐿−𝑙 ))

and𝑤
1:𝑙 (𝑙)Δ𝑙 + E𝑎′

𝑙
[𝑄̂𝑙 ] given 𝑎𝑙 . □

B RELATEDWORK
OPE is widely studied in recommender systems, as it enables perfor-

mance estimation of new policies using only logged data, without

any risky online interaction [1–4, 8, 14, 21, 24]. Direct Method

(DM) [1], IPS [14, 20], and DR [2, 4, 8, 24] are the three prevalent

estimators. DM adopts model-based approach for the performance

estimation. Specifically, DM first uses machine learning algorithms

to regress the reward. Then, DM takes expectation of the estimated



values over the evaluation policy. Though DM is reasonable when

the reward estimator is accurate, it is prone to have serious bias

because of model mis-specification [2, 8]. In contrast, IPS uses the

reward observations in the logged bandit data via importance sam-

pling. By addressing the distributional shift between behavior and

evaluation policies, IPS provides an unbiased estimation. However,

IPS suffers from large variance, especially when there is a weak

overlap between behavior and evaluation policies [2, 8]. DR ad-

dresses the above bias-variance tradeoff by leveraging DM as a

baseline and performs importance weighting only on the residual

of the reward estimation. Consequently, DR achieves lower variance

compared to IPS, while remaining unbiased.

Although these estimators work for single item recommenda-

tion policies, in practice, we often want to evaluate ranking policies

which present a ranked list of items to users. OPE for such ranking

policies remains unexplored compared to the standard contextual

bandit setting. In the slate contextual bandit setting, naive applica-

tions of the prevalent OPE methods confront challenges because

of a large combinatorial item space. In particular, IPS struggles

with extremely large variance [12, 13, 23]. To tackle the variance

issue, IIPS [12] and RIPS [13] utilize user behavior assumptions to

make combinatorial item space tractable. IIPS estimates the policy

value under the independence assumption, which assumes that a

user interacts with items independently. Under the independence

assumption, the reward observed at each position is totally inde-

pendent of all the other items in the same slate. The benefit of IIPS

is that it dramatically reduces the variance because of the strong

independence assumption. Although IIPS is unbiased under the

independence assumption, in real world data where this assump-

tion generally does not hold, it suffers from serious bias [13]. In

contrast to IIPS, RIPS estimates the policy value under the cascade

assumption, which assumes that a user interacts with items sequen-

tially from the top position to the bottom [6]. Under the cascade

assumption, the reward for each position is dependent only on the

items presented at previous positions, but is independent of the lat-

ter items. Since the cascade assumption is more realistic compared

to the independence assumption, RIPS is unbiased in more cases.

However, as we described in Section 2, RIPS can still suffer from

large variance, particularly when the slate size is large.

To address the above bias-variance tradeoff between IIPS and

RIPS, we proposed Cascade-DR, a DR estimator for ranking policies

that works under the cascade assumption. We derived our proposed

estimator inspired by DR in RL [8, 24], leveraging the structural

similarities between the cascade assumption and MDP as shown

in Figure 1. As a result, the proposed estimator achieves better

bias and variance compared to the existing estimators in the slate

contextual bandit setting.

PI [23, 25] is another estimator for OPE in the slate contextual

bandit setting. This estimator is designed for the situations where

we can access to only the slate-level reward, 𝒓∗. Then, PI estimates

the policy value as follows:

𝑉PI (𝜋𝑒 ;D) := E𝑛 [E𝜋𝑒 [1𝒂 | 𝒙]⊤E𝜋𝑏 [1𝒂1⊤𝒂 | 𝒙]†1𝒂𝑟∗]],
where superscript † indicates the pseudoinverse of the matrix.

PI is not suitable when slot-level rewards are observable, as it

cannot use any information about slot-level rewards. Furthermore,

although PI is unbiased under the independence assumption, the

independence assumption is usually unrealistic [13]. Therefore, if

the assumption does not hold, it can still lead to serious bias, as

empirically verified in McInerney et al. [13].

C IMPLEMENTATION
One possible limitation of Cascade-DR is that it involves a more

complicated implementation compared to the previous IPS esti-

mators (i.e., IPS, IIPS, and RIPS). In particular, we need to imple-

ment a recursive style baseline estimation process to obtain 𝑄̂ .

To reduce this potential overhead when using Cascade-DR, we

have prepared an easy-to-use implementation of our estimator

in OpenBanditPipeline (OBP)11. Our implementation is accessible

by obp.ope.SlateCascadeDoublyRobust. Our public implemen-

tation allows researchers and practitioners to use our approach

easily for their own purposes.

11
https://github.com/st-tech/zr-obp

https://github.com/st-tech/zr-obp
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