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ABSTRACT
Knowledge graph (KG) entity typing focuses on inferring possible
entity type instances, which is a significant subtask of knowledge
graph completion (KGC). Existing entity typing methods usually
exploit the entity representation to model the transmission between
entities and their types, which cannot fully explore the fine-grained
entity typing on identifying the semantic type of an entity. To
address these issues, we propose Neighborhood-Attention Neural
Fine-Grained Entity Typing (AttEt), which considers the neighbor-
hood information of the entities from KGs to bridge entities and
their types together. In this paper, AttEt first develops a type-specific
attention mechanism to aggregate the neighborhood knowledge
of the given entity with type-specific weights. These weights are
beneficial to capture various characteristics for different types of
the entity, and further imply the complex correlation among these
fine-grained types. Then, AttEt adaptively integrates the aggregated
neighbor-level representation with entity inherent embedding to
calculate the matching score between the entity and its candidate
type. Besides, many entities are sparse in their relations with other
entities in KGs, which makes the entity typing task more chal-
lenging. To solve this problem, we present a smooth strategy on
relation-sparsity entities to improve the robustness of the model.
Extensive experiments on two real-world datasets (Freebase and
YAGO) show that AttEt significantly outperforms state-of-the-art
baselines in the HITS@1 by 2.11% on Freebase and by 8.42% on
YAGO, respectively.
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1 INTRODUCTION
Knowledge graphs (KGs) like DBpedia [15], YAGO [29] and Free-
base [1], have gradually played a critical role in many knowledge-
driven applications, such as question answering [6, 9], recommen-
dation systems [28], dialogue generation [18], etc. Unfortunately,
KGs usually suffer from incompleteness because they are typically
populated automatically by mining from semi-structured or un-
structured data sources. For such incompleteness issue, a lot of
works [3, 16, 21, 45] have been proposed to complete knowledge
graphs. Nevertheless, they mainly focus on inferring missing en-
tities or relationships but rarely pay attention to the completion
of entity types. In practice, entity types are important and widely
used in various applications such as relation extraction [10, 46],
coreference resolution [8] and recommendation system [34].

Recently, extensive studies [20, 47] that focus on inferring entity
types using KGs have been presented and achieved promising per-
formance. These studies usually learn representations of entities
and types by leveraging translation-based methods [3, 17] or GCN-
based methods [12, 13], and then build the correlation between
the entities and their types. In representation learning stage, these
methods model the entity’s representation by e = f1({αi ,φi }), i =
1, . . .n, where αi is the importance of the neighborhood φi of the
entity e andn is the number of neighborhood of entity e . Concretely,
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Figure 1: Illustration of the entity Wales with its neighbor-
hoods and types. The table on the bottom is the weights dis-
tribution of entity on different neighborhoods for two types.

the translation-based methods treat entity’s neighborhoods equally
and assign the same weight on the importance distribution, i.e.,
α1 = α2 = · · · = αn . While GCN-based methods enrich entity’s
embedding by fusing all the embeddings of its neighbors with dif-
ferent weights, like α6 ≥ α4 ≥ α1 · · · ≥ α3. In the inference stage,
both methods apply another classification model f2(e, te ) to make
type inference, where te is the candidate type of the entity e .

However, when inferring different types of the same entity, the
weight distribution on the neighbors learned from the above meth-
ods is undifferentiated, which is not fully to exploit the complex
interdependencies between types, such as subtype, intersection and
disjunction. As shown in Figure 1, for the entity Wales, its four
types (country, uk_constituent_country, sport_country, film_location
1 ) imply the hierarchies of these fine-grained types. For example,
the type uk_constituent_country is the subtype of the type coun-
try, and the two types uk_constituent_country and sport_country
are intersected with each other as they are overlapped on some
topics. The bottom table gives the weight distribution on neighbor-
hoods of the entity Wales. Empirically, for inferring different types
like country and uk_constituent_country, the translation-based and
GCN-based methods have the same importance distribution, i.e.,
{α1 = α2 = α3 = α4 = α5 = α6} and {α6 ≥ α4 ≥ α1 ≥ α5 ≥ α2 ≥

α3}, respectively. Factually, the neighborhoods an entity has can
provide different importance to infer different fine-grained entity
types. For example, the neighborhood (Wales, administrative_parent,
United_Kingdom) has more important roles in revealing the type
uk_constituent_country because the Wales is a constituent country
of the United_Kingdom, and the neighborhood (Cardiff, administra-
tive_parent, Wales) are more likely to infer the type country because
the Cardiff is the capital city of theWales. That is, the weights of
such two neighborhood should be larger than other neighborhoods

1The prefix of types are trimmed for well-understood and concise description. For
instance, the type uk_constituent_country stands for the full name /location/uk_
constituent_country in real dataset.

when predicting types country and uk_constituent_country, respec-
tively. Thus, each type label of an entity should possess its own
importance distribution on neighborhoods, which can well capture
the characteristics of fine-grained types and reveal the correlation
among them.

In this paper, we focus on fine-grained entity typing (FET) for
KG completion. To solve this problem, we propose Neighborhood-
Attention Neural Fine-Grained Entity Typing model AttEt for in-
ferring entity types. Specifically, AttEt first designs a learnable
type-specific attention mechanism on the neighborhood context of
the entity, and learns the neighbor-level representation of the en-
tity by aggregating the neighborhoods with type-specific attention
weights. These type-specific attention weights on neighborhoods
can imply the characteristics of the fine-grained types. Then, AttEt
develops a neural component to obtain the comprehensive rep-
resentation by fusing the entity’s inherent representation and its
neighbor-level representation. Finally, AttEt estimates the matching
score between the entity and its candidate type to infer whether
the candidate type matches the entity. In addition, to maintain the
robustness of our model when facing the relation-sparsity entities
that have sparse neighborhoods in KGs, we design a smooth factor
to refine the attention scores for entity typing. We also empiri-
cally apply AttEt to two real-world datasets Freebase and YAGO
with extensive experiments. The results show that AttEt achieves
consistent gains over state-of-the-art methods.

2 PROBLEM STATEMENT
This paper focuses on entity typing without using external knowl-
edge for KG completion. Formally, we consider a knowledge graph
G containing triplets of the form (e, r , ē) and entity type instances
of the form (e, te ), where e, ē ∈ E, r ∈ R, te ∈ T , and E,R,T are
the entity set, relation set and entity type set, respectively. Each
triplet (e, r , ē) represents that the head entity e and tail entity ē are
connected with the relation r and each entity type instance (e, te )
represents the entity e has the entity type te .

Usually, entities in KGs have multiple types. The neighborhoods
of entities can provide more valuable and richer information about
which candidate types should be attached to the entity. Therefore,
this work aims to infer missing entity type instances under consid-
ering the neighborhood context of entities, i.e., the entity typing
task is to estimate the match probability between the entity e and
its candidate entity type te by s = д(e, te |G,N(e)), where д is our
entity typing framework and N(e) is the neighborhood context of
the entity e .

3 MODEL
Our model first learns the neighbor-level representations of the
entities by a type-specific attention mechanism, and the entities’
inherent representations (i.e., entity-level) by the translation-based
method [3], respectively. Then, our model integrates the neighbor-
level and entity-level representations to estimate the match prob-
ability between the entities and their candidate types. Figure 2
illustrates the framework of our model.
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Figure 2: Simple visualization of AttEt architecture.

3.1 Encoding Neighborhoods in KGs
As mentioned above, the neighborhood could make different con-
tributions in inferring different types of the entity. Therefore, we
adopt a type-specific attention mechanism to assign type-specific
weights on neighborhoods of the entity, and aggregate such neigh-
borhoods with type-specific weights to obtain the neighbor-level
representation of the entity afterward.

The relations of a given entity linked with other entities cap-
ture its context and provide us with valuable information about
what is the type of entity[33]. In this paper, different from inferring
types only by using relations in neighborhoods of the target entity,
we combine both relations and entities in neighborhoods of the
target entity to provide more fine-grained inference. Furthermore,
the entities in neighborhoods, especially, are promoted to distin-
guish hierarchies of the fine-grained entity type labels. Taking the
entity Wales in Figure 1 as an example, without considering the
neighbor entities {Cardiff, United_Kingdom } connected with the
relation administrative_parent, it is inefficient to infer how large
the administrative area ofWales is, like a country or a city. When
considering the neighbor entity Cardiff city of the entity Wales, it
is more likely to assign the larger area type country toWales, while
prompting to assign a smaller area type uk_constituent_country for
Wales with the neighbor entity United_Kingdom.

For brevity, we define the neighborhood set of the entity ei
as N(ei ) = {(ri1, ei1), (ri2, ei2), ..., (rin, ein )}, where ri j with j =
1, ...,n is the relation that links from entity ei to ei j or vice versa,
and n is the number of neighborhoods of the entity ei . Inspired
by the typical embedding methods [3, 17], we also distinguish the
incoming and outgoing 2 neighborhoods of the entities in embed-
ding learning. Thus, we define the following indicator function to
2The outgoing neighborhoods are the neighbor entities with relations linked from ei
to the neighbor entities, and incoming neighborhoods have the relations in opposite
direction.

strengthen the neighborhood set of entity ei as

fi j =

{
+1, (ei , ri j , ei j ) is hold
−1, (ei j , ri j , ei ) is hold

(1)

Having established the neighborhood set with its indicator func-
tion, we develop the type-specific attention mechanism to explore
the weight distribution of the neighborhoods for predicting fine-
grained type labels. First, we use two shared linear transformations,
parameterized by two weight matrices Wq and Wk , to compute
the attention coefficients αi , j between the candidate type tei of the
entity ei and its neighborhood entity ei j with relation ri j , i.e.,

αi , j =
1
zi
(Wq tei )

⊤Wk (ei j + fi j ∗ ri j ) (2)

where tei is the type embedding of entity ei , Wq ∈ Rd×d is the
query parameter matrix,Wk ∈ Rd×d is the key parameter matrix
and zi is the normalized factor as

zi =
∑

(ri j ,ei j )∈N(ei )

(Wq tei )
⊤Wk (ei j + fi j ∗ ri j ), j ∈ [1, ...,n] (3)

The type-specific attention mechanism makes different types of the
entity have the different weight distribution {αi ,1,αi ,2, ...,αi ,n } on
its neighborhoods. The type-specific weight distribution naturally
implys the correlation among fine-grained type labels (discussed in
section 4.3). This is different from previous translation-based and
GCN-based methods on using neighborhoods to infer types.

Importantly, there exist many relation-sparsity entities that are
sparse in their relations with other entities in KGs, which typically
have a small number of neighborhood triples but a large number
of types. Their inference lack related semantical support of the
neighborhoods. According to the statistics, there are about 4.73%
of entities whose types are five times more than their neighbor-
hoods in YAGO43kET. For example, the entity Tina_Turner only has
two neighbors (Tina_Turner, hasMusicalRole, wordnet_vocal_music_
107282006), (Tina_Turner, hasGender, female) and 70 entity types,
such as wikicat_Swiss_dancers and wikicat_20th-century_women_
writers. Obviously, it is hard to support all entity types only by the
small scale of neighborhoods of the relation-sparsity entities. Thus,
for improving the robustness of the model when facing the relation-
sparsity entities, we introduce a smoothing factor λ to refine the
attention coefficient as

α ′
i , j = (1 − λ)αi , j + λ

1
n

(4)

The smooth factor is a balance between the weights from the type-
specific attention mechanism and the weights of the averaged num-
ber of neighbors. Specifically, the model is beneficial to the relation-
dense entities when λ = 0, and is helpful to the relation-sparsity
entities when λ = 1. Intuitively, there are different optimal λ for
datasets with different sparsity. The case study in section 4.4 proves
the above intuition. Besides, to constrain the model complexity and
avoid overfitting, we employ a bias neighborhood (rb , eb ) for every
entity ei ∈ E in practice. Finally, the neighbor-level representation
of the target entity ei is computed by a linear combination of its
neighborhoods with their type-specific weight coefficients α ′

i , j , i.e.,

Hneiдhbor =
∑

(ri j ,ei j )∈N(ei )

α ′
i , jWv (ei j + fi j ∗ ri j ) (5)
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whereWv ∈ Rd×d is the value parameter matrix of type-specific
attention module.

3.2 Encoding Triplets in KGs
As studied in [47], the raw embeddings of entities learned from
translation-based model [3, 35] imply the KGs’ inherent properties,
which are also helpful for encoding entity type assertions. Thus, we
employ a non-linear transformation to extract the entity-level se-
mantic representation from the raw embeddings of entities trained
by TransE [3], i.e.,

H = σ (Wei + b) (6)

whereW ∈ Rd×d , b ∈ Rd are the weight parameters, and σ is the
activate function, which can be sigmoid, relu and tanh, etc.

Significantly, fusing a strong embedding model like TransX [11,
36] and DKRL [37] to gain improvement is not our core contribution.
For the fair comparison with baselines, we just choose TransE [3]
as the basic embedding approach in our experiments.

3.3 Entity Type Prediction
In order to fully explore the information of entities and their neigh-
borhoods, we first incorporate the neighbor-level and entity-level
representation of the entity ei into a neural network to get the final
entity representation as

t̂ei = MLP([H;Hneiдhbor ]) (7)

Furthermore, we define the prediction function to measure the
matching score between entity ei and its candidate entity type tei
as

s(ei , tei ) = ∥ t̂ei − tei ∥2 (8)

The prediction function uses the L2-norm that expects lower scores
for the positive samples and higher scores for the negative samples.

3.4 Optimization
To distinguish positive and negative samples, our model is driven
to optimize the margin-based ranking loss to lower the scores of
positive instances than those of negative ones. In equation (9), the
loss function takes a pair of the positive and negative samples as
input each time and expects a score gap between them.

L =
∑

(ei ,tei )∈∆ei

∑
(ei ,t ′ei )∈∆

′
ei

[s(ei , tei ) − s(ei , t
′
ei ) + γ ]+ (9)

where [x]+ =max(0, x), and γ > 0 is the margin hyper-parameter.
(ei , tei ) and (ei , t

′
ei ) are the positive and negative training samples

selected from the positive sample set ∆ei and the negative sample
set ∆′

ei , respectively. Here, the positive sample are entity type in-
stances observed while the negative sample set is constructed by
randomly selecting false types of the entity from the entire type
set, i.e., ∆′

ei = {(ei , t
′
ei )|t

′
ei < T(ei )}, where T(ei ) is the type set of

the entity ei .

4 EXPERIMENT
We study and evaluate our model on the entity type prediction
task with two standard entity typing datasets. Further, we show
the experimental results and some analysis of them.

Datasets FB15k YAGO43k

ET

#Entity 14,951 42,335
#Type 3,851 45,182
#Train 136,618 375,853
#Valid 15,749 42,739
#Test 15,780 42,750

KG
#Entity 14,951 42,335
#Relation 1,345 37
#Triplet 483,142 331,687
Table 1: Dataset statistics.

4.1 Experimental Setup
Dataset.We evaluate our model on two real-world KGs, FB15k [3]
and YAGO43k [20], which are widely used in KG embedding lit-
eratures. FB15k and YAGO43k are the subsets of Freebase [2] and
YAGO [29] respectively. Additionally, two supplementary entity
type datasets FB15kET and YAGO43kET [20] are used to map enti-
ties of FB15k and YAGO43k to their entity types. To maintain fair
comparison with baselines, we follow preprocessing steps of [20]
and directly apply their split settings of train(80%), validation(10%),
and test(10%) in our experiment. The basic statistics of datasets are
shown in Table 1.

Baselines. In this paper, we select several state-of-the-art entity
typing methods as our baselines.

• RESCAL [23], TransE [3], HOLE [22]. These are the typical
embedding methods, which learn the embeddings of entities
and their types from the triplet (entity, rdf:type, type).

• RESCAL-ET, TransE-ET, HOLE-ET [20]. These methods con-
sider the contextual relations of a triplet to learn KG’s em-
bedding based on the models RESCAL, TransE, HOLE.

• HMGCN [13]. This model utilizes GCN [14] to capture se-
mantic correlations between entities for typing prediction.
For fair comparison, dependency among types is not used in
HMGCN’s training stage.

• ETE [20]. This model learns the embedding of each type to
be closer to its entity embedding, and further makes type
prediction.

• ConnectE [47]. This model makes the translating assumption
on entity triplets and type triplets to learn their embeddings,
and further encodes plausibility between the entity and its
type.

Evaluation Protocol. In the testing phase, we first substitute
the entity type te of each test sample (e, te ) by every type t ∈ T ,
and use the score function s(e, t) to calculate the scores of these
corrupted samples. We then rank these scores in ascending or-
der and obtain the rank of original test sample (e, te ). Inspired by
TransE [3], the constructed negative sample maybe actually exist
in KGs, also known as the false negative sample, which interferes
with the final prediction performance. Hence we adopt the “filtered”
setting [47] to filter the “false” negative samples before calculat-
ing score ranking. Following state-of-the-art baselines, we use the
mean reciprocal rank (MRR) and HITS@{1,3,10}(%) as our metrics
to evaluate our model.
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DATASET FB15kET YAGO43kET
METRICS MRR HITS@1 HITS@3 HITS@10 MRR HITS@1 HITS@3 HITS@10
RESCAL[23] 0.19 9.71 19.58 37.58 0.08 4.24 8.31 15.31
RESCAL-ET[20] 0.24 12.17 27.92 50.72 0.09 4.32 9.62 19.40
HOLE[22] 0.22 13.29 23.35 38.16 0.16 9.02 17.28 29.25
HOLE-ET[20] 0.42 29.40 48.04 66.73 0.18 10.28 20.13 34.90
TransE[3] 0.45 31.51 51.45 73.93 0.21 12.63 23.24 38.93
TransE-ET[20] 0.46 33.56 52.96 71.16 0.18 9.19 19.41 35.58
ETE[20] 0.50 38.51 55.33 71.93 0.23 13.73 26.28 42.18
HMGCN[13] 0.51 39.02 54.75 72.36 0.25 14.21 27.34 43.69
ConnectE[47] 0.59 49.55 64.32 79.92 0.28 16.01 30.85 47.92
Ours 0.62 51.66 67.68 82.13 0.35 24.43 41.31 56.48

Table 2: Performance comparison on knowledge graph entity typing.

Model FB15kET YAGO43kET
AttEt-without-Neighbors 49.60% 17.13%
AttEt-without-Attention 49.87% 22.87%
AttEt 51.66% 24.43%

Table 3: Performance of different variants of AttEt on
HITS@1.

Neighborhoods sampling. The entities in KGs usually have
different numbers of neighborhoods. Also, not every neighborhood
has a positive effect on type prediction. Thus, similar to the dropout
technique, independent repeated sampling is executed for n times
from the neighborhood set of the entity ei to construct N(ei ).

Hyperparameters setting. In our model, the embeddings of
the entities and relations are initialized by TransE [3], and the
embeddings of entity types are initialized by uniform distribu-
tion [−0.03, 0.03]. In training stage, we select the learning rate
µ ∈ {0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1}, the smoothing fac-
tor λ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}, the margin γ ∈ {0, 1, 2}, the embed-
ding dimensiond ∈ {50, 100, 200}, the batch sizeb ∈ {16, 32, 64, 256},
and the size of neighborhood set n ∈ {4, 8, 16, 32, 64, 128, 256, 512,
1024}. The optimal hyperparameter configuration is selected based
on MRR by grid search in valid dataset as follows: the learning rate
µ is 0.003, the margin γ is 1, the embedding dimension of entity,
relation and entity type d are all set to 200, the batch size b is 64,
the size of neighborhood set n is 128, the smoothing factor λ is
0.2 for FB15kET and 0.8 for YAGO43kET. We employ AdaGrad [7]
to optimize the model’s hyperparameters and run 800 epochs on
FB15kET and YAGO43kET. Training our model on a machine with
one Telsa-V100 graphics card takes about 19 hours on average.

4.2 Entity Type Prediction
The objective of this task is to complete a pair (entity, entity type)
when its type is missing. Table 2 gives the convincing results of
entity type prediction on FB15kET and YAGO43kET. From Table 2,
we can observe that our model consistently outperforms all base-
lines on two datasets with all metrics. It confirms that our model
successfully uses the neighborhood context of entities to improve
the prediction performance on the entity typing task. That is, the

type-specific attention mechanism can assign varying weight on
neighborhoods of the entities, and further is indeed beneficial to
reveal the fine-grained entity types. Specifically, for FB15kET, our
model achieves 0.62 onMRR, 51.66% onHIST@1, 67.68% onHIST@3
and 82.13% on HIST@10, which is at least 0.03 on MRR, 2.11% on
Hits@1, 3.36% on Hits@3 and 2.21% on Hits@10 higher perfor-
mance than state-of-the-art methods. Similarly, for YAGO43kET,
our model brings a 0.07 gain on MRR, 8.42% on Hits@1, 10.46%
on Hits@3 and 8.56% on Hits@10 compared with baselines. More-
over, our model achieves higher performance improvements on
YAGO43kET than FB15kET since YAGO43kET is sparser and con-
tains a larger number of relation-sparsity entities than FB15kET. It
suggests the smoothing factor λ can effectively strive for model’s
robustness when facing the relation-sparsity entities.

In order to qualitatively verify the effectiveness of our model,
we construct the following variants of our model and report their
results on HITS@1 metric:

• AttEt without Neighbors. This model infers entity types
without considering the neighborhood of the entities. Similar
to ConnectE [47], it directly uses the entity-level representa-
tions of the entities to calculate the matching score between
the entity and its candidate type.

• AttEt without Attention. This model does not use the
type-specific attention mechanism to learn the neighbor-
level representation of the entities, which assigns the equal
weight α ′

i j =
1
n on every neighborhood.

The results are reported in Table 3, which can be observed that At-
tEt achieves the best performance on entity type prediction among
all variants. We attribute the superiority of AttEt to the following
aspects: (1) AttEt improves by 2.06% and 7.3% on HITS@1 compared
with AttEt-without-Neighbors. It suggests that AttEt successfully
incorporates neighborhood context to enhance the prediction per-
formance. This once again confirms that the neighborhood context
of the entities indeed implies the fine-grained types. (2) AttEt has
1.79% and 1.56% higher performance on FB15kET and YAGO43kET
than AttEt-without-Attention respectively, which indicates that the
type-specific attention mechanism that assigns the type-specific
weights on neighborhoods is beneficial to improve prediction per-
formance.
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Figure 4: Attention weight visualization for entity Wales.

4.3 Effectiveness of Neighborhoods-Attention
on Fine-grained Entity Type

In the real KGs, it usually exists correlation among the fine-grained
types, such as subtype, intersection, and disjunction patterns. For ex-
ample, the type /location/uk_statistical_location is the subtype of the
type location/location, the two types /location/uk_statistical_location
and /location/region are intersected as such two entity types are
overlapped or similar in some topic, and the type /tv/tv_writer is
disjoint with the type /location/location as they are absolutely unre-
lated with each other in semantic.

In this paper, the type-specific attention mechanism can assign
different weights on the neighborhood of the entity for the en-
tity’s different types, which can effectively confirm the hierarchical

pattern among the fine-grained entity types. Intuitively, the neigh-
borhoods with the larger weight can better reflect the semantic
characteristics of the type. Thus, for each entity type of each entity,
we rank the normalized attention score assigned on neighborhoods
in decreased order, and select the top neighborhoods with higher
scores where the sum of their score is just up to the threshold θ as
Equation (10). θ = 0.5 is empirically in our experiments.

N ′(tkei ) = {x1, x2, ..., xm } (10)

where tkei is the k-th type of the entity ei , x j ∈ N(ei ), sx j ≥ sx j+1
and

∑
x ∈N′(tkei )

sx ≥ θ .

In this section, we define the selected top neighborhoodsN ′(tkei )
as the support set of the type with a given entity. To obtain the
correlation among types, we use the support set of the type as the
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bridge to verify the subtype, intersection, and disjunction relation
patterns among types:

• Subtype. If the support set of type A is a subset of the sup-
port set of type B, then type A is a subtype of type B, i.e.,
type B is a supertype of type A. For example, the type /loca-
tion/uk_civil_parish is a subtype of the type /location/location.
This strict definition can not establish the subtype relation
between type A and B even if just only one element of type
A is not included in type B. In practice, the strict subset
between two types rarely occurs and usually suffers from
noise elements. To overcome this issue, we introduce a fac-
tor α and define a α-Subtype relation to make more flexible
calculation as Equation (11). The α-Subtype can be estab-
lished once α proportion of A is included by B instead of all
elements.

A ⊂α B ≡
|A ∩ B |

|A|
≥ α (11)

• Intersection. If the support set of type A and type B share
at least one neighborhood, then the A is intersected with
type B. For example, the two type /location/region and /loca-
tion/uk_statistical_location are similar in some topics. The
number of the shared neighborhoods (i.e., overlapping por-
tion) between the support set of type A and type B can model
the similarity between two types. The bigger the overlapping
portion, the more similar they are. Practically, the duplicated
or redundant types are usually introduced during construct-
ing or populating the knowledge graphs, which makes it
necessary to measure the similarity between the types. Here,
we adopt α-Subtype to define the α-Intersection relation
as Equation (12), where type A and type B are α-Intersection
if they are α-Subtype of each other.

A ∼α B ≡ A ⊂α B and B ⊂α A (12)

• Disjunction. In contrast, entity types A and B are disjoint
if their support set do not share any neighborhood element,
which implies these two types focus on the different topics,
such as /tv/tv_writer and the /location/uk_statistical_location.

Based on the definition of the above relation patterns among
fine-grained entity types, we take typical type location and person
as examples, and visualize the hierarchical graph in Figure 3 under
the support set of types. In this experiment, we select the entity
Wales and Barack_Obama as the target entities, and use them to
confirm the hierarchical correlation among their fine-grained type
labels. As shown in Figure 3. An oval that is completely contained
in another oval is a subtype of that oval: any entity exhibiting the
inner type will exhibit the outer one as well. Overlapping ovals
like country and sport_country represent indicate that types are not
mutually exclusive and intersected with each other. To some extent,
from the examples in Figure 3, we can observe that: (1) The learned
type-specific attention weights on neighborhoods can effectively
reflect the subtype hierarchical structure among the fine-grained
entity types. Specifically, the fine-grained types uk_constituent_
country and music/artist are the subtype of the coarse type country
and person, respectively. (2) The weight distributions on neighbor-
hoods also imply the intersection correlation pattern between the
entity types. For example, the two types country and sport_country
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Figure 5: Performance with different smooth factor settings
on FB15kET with different dropping rates.

are intersected with each other as they are similar in some neigh-
borhoods. Similarly, the two types us_president and public_speaker
are also intersected with each other. (3) The disjunction pattern
is also revealed by the weight distributions on neighborhoods. In
particular, the type film_location is disjoint with country as they
have no overlapped neighborhood to support their type semantic.

To make the analysis more concrete and intuitive, we take the
entityWales and its several typical types from FB15KET as examples
for the case study. For each candidate type of the entity Wales, its
attention weight distribution over all neighborhoods is calculated
as Equation (2), which implies the varying importance of different
entity’s neighborhoods to infer the entity type. For a more intuitive
analysis, we select the top-5 neighborhood with larger attention
weight of each type of the entity Wales, and visualize them in
Figure 4. In this figure, the orange color indicates the incoming
neighborhoods and blue is the outgoing neighborhoods. For each
subfigure, the histogram displays the attention weight distribution
over the top-5 neighborhoods, where y-axis is the attention weight
score calculated from Equation (2) and x-axis are the indexes of the
neighborhoods listed at the top. Besides, we also visualize these
attention weights by the green color, where the thicker the green
line, the larger the weight.

From Figure 4, we can see that: (1) For the same entity, the at-
tention weight distribution over its neighborhood set is varying
for its different types. Commonly, entity types always pay more
attention to neighborhoods that reveal the semantic with them. For
example, the type uk_constituent_country assigns higher weights
on the neighborhood (Wales, adjoins, England) and (Wales, admin-
istrative_parent, United_Kingdom). Moreover, these neighborhoods
with higher weights can slightly give clues about why does the
entity Wales belongs to the type uk_constituent_country. (2) The
attention weight distribution of subtype entity types is more con-
centrated while that of supertype entity types is more uniform.
For example, the subtype type uk_constituent_country heavily cen-
tralizes on the neighborhoods (Wales, country, United_Kingdom)
with larger attention weight. While the supertype country assigns
the scattered weights with similar values on neighborhoods, like
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(Wales, capital, Cardiff ), (Wales, official_language Welsh_language)
and (Wales, countries, Constitutional_monarchy). It again reveals
that the type-specific weight distribution on neighborhoods can
reveal the correlation between fine-grained entity types.

4.4 Smooth Factor over Attention
In practice, there are a large proportion of entities having sparse
relations with other entities in KGs. To strive for our model’s ro-
bustness when facing the relation-sparsity entity, we employ the
smooth factor λ over type-specific attention mechanism as Equa-
tion (4). In this section, we discuss how different smooth factor
setting affects the performance under different degree of sparsity
of dataset.

To construct datasets with different degrees of sparsity, neighbor-
hoods of entities in FB15KET are dropped randomly with different
rates as Equation (13). In our experiment, the dropping rates p ∈ {
90%, 70%, 50%, 30%, 0% } are adopted, which means what percentage
of neighborhoods to be dropped.

|N ′
p (ei )| = (100% − p) × |N(ei )| (13)

where N ′
p (ei ) ⊂ N(ei ) is the neighborhood set dropped from the

original datasetsN(ei ) with dropping rate p. Particularly, the drop-
ping rate 0% is the baseline where the original dataset is used
directly without dropping in practice.

Based on optimal settings described in Section 4.1, we report
the results with different smooth factors λ ∈ { 0.0, 0.1, 0.3, 0.5, 0.7,
0.9, 1.0 } on all datasets with different degrees of sparsity, i.e., un-
der different dropping rate p on the original dataset. Particularly,
when λ is 1, Equation (4) disables the attention mechanism and
α ′
i , j equals

1
n , which is a linear combination over neighborhoods to

obtain the neighbor-level features. While λ is 0, it is fully weighted
by the attention score. The λ between 0.0 and 1.0 is a trade-off
between the attention mechanism and the linear combination. An-
alyzing such performance comparison shown in Figure 5, we have
the following observations: (1) The optimal smooth factor depends
on the degree of sparsity of the dataset. For the sparser data sets,
the performance of the model is better by choosing larger λ. It
means putting more weight on the average of the neighborhoods.
Particularly, the dataset with a 90% dropping rate makes a higher
performance with λ = 1.0 than that with λ = 0.0 about 1.2%. (2)
The degree of sparsity of dataset indeed affect performance directly.
Compared with the baseline (p = 0%), the best hit@1 measure un-
der p = {30%, 50%, 70%, 90%} drops to 0.31%, 0.54%, 0.79%, 1.53%
respectively, which suggests that the sparser dataset is harder to
achieve higher performance than the dense one.

5 RELATEDWORK
With the widespread application of KGs, knowledge graph com-
pletion (KGC) becomes increasingly important in both academia
and industry. Most existing approaches like translation-based meth-
ods [3, 21, 45] mainly focus on performing link prediction task and
triplet classification task, which predicts the missing h or t for a
golden triplet (h, r , t) and judges whether a given triplet (h, r , t) is
correct or not, respectively. For example, the typical method TransE
[3] treats the relation as a translation vector to link the head and

tail entities, and makes the triplet satisfy h+r ≈ t. Later translation-
based works such as [11, 17, 19, 35, 36] are presented to learn the
KG’s embeddings. Also, there exists many semantic-matching meth-
ods [24, 30–32, 42] that employ the matching mechanism to explore
the plausibility of the triplet, such as Dismult [42] defines the match-
ing operation as hMr t ≈ 1 to learn KG’s embeddings.

Fousing on the entity typing task, the previous studies [4, 5, 25,
38, 40, 41, 44] usually mine fine-grained entity type with exter-
nal auxiliary information, such as web search query logs [26], the
textual surface patterns [43], and Wikipedia [48]. These methods
have low generality and flexibility as they are limited by the qual-
ity of auxiliary information. Recently, the structured facts in KGs
can provide more precise and solid information in inferring entity
types. A number of methods use KGs to complete the missing entity
types have been proposed. One method [20, 47] attempts to learn
the entity embeddings from KGs by representation learning meth-
ods [3], and further build the transmission between entities and
their types. For example, ConnectE [47] employs the entity triplet
and type triplet together to learn the embeddings of entities and
types, and project the entity embeddings into type space to make
type inference. The second method [12, 27, 39, 41] utilizes entity’s
feature (textual description, property and category) or mention
in text to do inference. For instance, HMGCN [13] uses GCN to
embed multiple kinds of semantic correlations between entities to
make typing prediction. However, these work ignore the different
importance of neighborhood on inferring different entity types.
To address the issues, we propose a neighborhood-attention neu-
ral network, which enables the fine-grained entity types to have
their own weight distribution on neighborhoods for capturing their
characteristics.

6 CONCLUSION
In this paper, we propose a neighborhood-attention neural fine-
grained entity typing model AttEt for KG completion, which incor-
porates the neighborhoods of the entity to bridge the entities and
their types together. Specifically, AttEt devises a type-specific atten-
tion mechanism on the neighborhoods for learning the neighbor-
level representation of the entities, and adaptively incorporates the
embeddings of entities with their neighbor-level representation to
make entity type inference. The varying attentive scores on neigh-
borhoods of the entity can imply and reveal the complex correlation
between the fine-grained entity types. Besides, AttEt develops the
smooth factor to strive for its robustness when facing the relation-
sparsity entities. The experimental results on two datasets show
that AttEt significantly outperforms state-of-the-art baselines in
the HITS@1 by 2.11% on Freebase and by 8.42% on YAGO.
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