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ABSTRACT
Tagging based relational triple extraction methods are attracting
growing research attention recently. However, most of these meth-
ods take a unidirectional extraction framework that first extracts
all subjects and then extracts objects and relations simultaneously
based on the subjects extracted. This framework has an obvious
deficiency that it is too sensitive to the extraction results of subjects.
To overcome this deficiency, we propose a bidirectional extraction
framework based method that extracts triples based on the entity
pairs extracted from two complementary directions. Concretely, we
first extract all possible subject-object pairs from two paralleled di-
rections. These two extraction directions are connected by a shared
encoder component, thus the extraction features from one direction
can flow to another direction and vice versa. By this way, the extrac-
tions of two directions can boost and complement each other. Next,
we assign all possible relations for each entity pair by a biaffine
model. During training, we observe that the share structure will
lead to a convergence rate inconsistency issue which is harmful to
performance. So we propose a share-aware learning mechanism to
address it. We evaluate the proposed model on multiple benchmark
datasets. Extensive experimental results show that the proposed
model is very effective and it achieves state-of-the-art results on
all of these datasets. Moreover, experiments show that both the
proposed bidirectional extraction framework and the share-aware
learning mechanism have good adaptability and can be used to im-
prove the performance of other tagging based methods. The source
code of our work is available at: https://github.com/neukg/BiRTE.
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1 INTRODUCTION
The task of relational triple extraction (RTE for short) is to extract
triples from unstructured natural language text (often sentences).
These relational triples store factual knowledge in the form of (sub-
ject, relation, object), where both subject and object are entities and
they are connected semantically by relation. For example, a triple
(Washington, capital_of, the United States) expresses the knowledge
that “Washington is the capital of the United States”. Nowadays, RTE
are attracting more andmore research interest due to its importance
for many downstream applications like automatic knowledge graph
construction, and many novel RTE methods have been proposed.

Early RTE methods [2, 28, 35] often use a pipeline based ex-
traction framework that recognizes all entities in the input text
first, and then predicts the relations for all the combinations of
entity pairs. These methods are flexible for they can make full use
of existing achievements in the research domains of both name
entity recognition and relation classification. But they have fol-
lowing two fatal deficiencies. First, they ignore the correlations
between entity recognition and relation prediction. Second, they
suffer from the error propagation issue greatly. Thus more and
more researchers begin to explore a kind of joint extraction meth-
ods that extracts entities and relations simultaneously in an end-
to-end way, and lots of novel joint extraction methods have been
proposed [1, 7, 8, 15, 23, 24, 26, 27, 29, 34].

Among these joint extraction methods, a kind of tagging based
methods [24, 26, 34] show great superiority in both the performance
and the ability of extracting triples from following two kinds of
complex sentences. The first kind is the sentences that contain
overlapping triples (a single entity or an entity pair participates in
multiple relational triples of the same sentence [31]). The second
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kind is the sentences that contains multiple triples. Existing tag-
ging based methods often decompose the whole RTE task into two
tagging based subtasks: the first one recognizes all subjects and the
second one recognizes all objects and relations simultaneously. For
convenience, we call them as unidirectional extraction framework
based methods. Despite the great success, they are far from their
full potential because they suffer from the following issue greatly:
once the extraction of a subject is failed, the extraction of all triples
associated with this subject would be failed accordingly. Here we
call an entity as a ground entity if it is extracted firstly in a triple,
and call the mentioned issue as ground entity extraction failure.
Obviously, this issue is harmful to the performance of RTE greatly.

To address thementioned issue, we propose BiRTE, a Bidirectional
extraction framework based Relational T riple Extraction model. It
follows the tagging based extraction route but takes both subjects
and objects as ground entities. Our method is mainly inspired by
following cognition: if we take both subjects and objects as ground
entities and extract triples from the directions of “subject->object-
>relation” and “object->subject->relation”, then even if a ground
entity is failed to be extracted in one direction, it is still possible
to be extracted from another direction (but not as a ground entity),
thus its associated triples are still possible to be extracted from
another direction accordingly. Thus, the mentioned ground entity
extraction failure issue can be well addressed inherently.

Based on above cognition, BiRTE is designed as follows. First, it
extracts subject-object (s-o for short) pairs from the directions of
subject-to-object (s2o for short) and object-to-subject (o2s for short).
These two extraction directions work in parallel but are connected
by a shared encoder component, which makes the extraction fea-
tures from one direction can be injected into the extraction features
of another direction, and vice versa. This extraction structure brings
an obvious advantage: the extractions of two directions complement
each other and their extraction results can be validated each other.
And such advantage is much helpful for the whole triple extraction
since reliable s-o pairs are the foundation of extracting accurate
triples. With this bidirectional extraction framework, lots of s-o
pairs are extracted. Among them, there are also many noise pairs
that do not possess any relations. Thus a strong relation classifica-
tion model is required. In BiRTE, we use a biaffine model to assigns
all possible relations for each s-o pair. Given a s-o pair, the biaffine
model can mine deep interactions between the subject and the ob-
ject, thus all the relations of this s-o pair can be easily extracted.
Besides, during training, we observe there would be a harmful con-
vergence rate inconsistency issue caused by the share structure. To
overcome it, we propose a share-aware learning mechanism which
assigns different learning rates for different modules.

We evaluate BiRTE on multiple benchmark datasets. Extensive
experiments show it consistently outperforms existing best RTE
methods on all datasets, and achieves new state-of-the-art results.

2 RELATEDWORK
At present, the joint extraction methods are becoming dominated in
RTE. According to the extraction routes taken, we roughly classify
them into following three main kinds.

Tagging Based Methods In this kind of methods, binary tag-
ging sequences are often used to determine the start and end posi-
tions of entities, sometimes are also used to determine the relations
between two entities too. For example, [34] propose a tagging based
framework that converts the joint extraction task into a tagging
problem to extract entities and their relations directly. Recently,
researchers [24, 26] begin to explore a unidirectional extraction
framework based tagging methods: first extract all subjects, and
then extract objects and relations simultaneously based on the
subjects extracted. Especially, CasRel [24], one of the most latest
tagging based methods, provides a fresh perspective for the RTE
task: it models relations as functions that map subjects to objects.
Experiments show that CasRel not only achieves very competi-
tive results, but also has strong ability for extracting triples from
sentences that contain overlapping triples or multiple triples.

Table Filling Based Methods This kind of methods [11, 14, 23,
32] would maintain a 𝑙 × 𝑙 table for each relation (𝑙 is the number
of tokens in an input sentence), and the items in this table usually
denotes the start and end positions of two entities (or even the
types of these entities) that possess this specific relation. So the
RTE task in this kind of methods is converted into the task of filling
these tables accurately and effectively.

Seq2Seq Based Methods This kind of methods often view a
triple as a token sequence, and convert the RTE task into a gen-
eration task that generates a triple in some orders, such as first
generates a relation, then generates entities, etc. For example, [16]
use an encoder-decoder architecture in their method. [25] propose a
contrastive triple extraction method with a generative transformer.
Other representative work of this kind includes [29–31].

Researchers also explore other extraction routes for RTE. For
example, [3] propose a unified framework to extract explicit and
implicit relational triples jointly. [22] provide a revealing insight
into RTE from a stereoscopic perspective. [33] propose a joint RTE
framework based on potential relation and global correspondence.

3 METHODOLOGY
The architecture of BiRTE is shown in Figure 1, from which we can
see that it consists of following three main components: a BERT
based Encoder component, a Bidirectional Entity Pair Extraction
component (BiEPE for short), and a biaffine based Relation Extraction
component (RE for short). During training, the modules in BiEPE
and RE work in a multi-task learning manner. This brings an advan-
tage that each module can be trained with the ground-truth input,
thus a more reliable model can be obtained. But in the inference
phase, BiEPE and RE work in a sequential manner.

3.1 Encoder
Here we first use a pre-trained BERT (Cased) [4] model to generate
an initial representation for each token (denoted as h(.) ∈ R𝑑ℎ )
in an input sentence. Then we generate three distinct token rep-
resentation sequences as a kind of context features for subjects,
objects, and relations respectively. This is much different from most
of existing state-of-the-art methods like CasRel [24], TPLinker [23],
or PMEI [20]: all of them use an unified feature for subjects, objects,
and relations. But we think that different kinds of items in triples
have their own characteristics. Thus, it would be more reasonable



Figure 1: The Architecture of BiRTE. The modules with the same color have the similar inner structures. The solid lines
represent the training process, and the dashed lines together with the solid lines represent the inference phase.

to use different features for them. Concretely, we denote the 𝑖-th
token representations of these three contextual features as h𝑖𝑠 , h𝑖𝑜 ,
and h𝑖𝑟 respectively, and they are computed with Eq.(1).

h𝑖𝑠 = W𝑠h
𝑖 + b𝑠

h𝑖𝑜 = W𝑜h
𝑖 + b𝑜

h𝑖𝑟 = W𝑟h
𝑖 + b𝑟

(1)

where W(.) ∈ R𝑑ℎ×𝑑ℎ is a trainable matrix, b(.) ∈ R𝑑ℎ is a bias
vector, and 𝑑ℎ is the dimension.

Besides, considering the subject and object in a triple are highly
correlated, the features from one entity would be helpful for the
extraction of another entity. So we add the object token represen-
tation sequence’s CLS vector (denoted as h𝑐𝑙𝑠𝑜 ) to h𝑖𝑠 to enhance
the representation ability of the subject’s context features. Similar
operation is also performed on the object part, as shown in Eq.(2).

h𝑖𝑠 = h𝑖𝑠 + h𝑐𝑙𝑠𝑜

h𝑖𝑜 = h𝑖𝑜 + h𝑐𝑙𝑠𝑠

(2)

3.2 BiEPE
BiEPE has a bidirectional framework that extracts s-o pairs from fol-
lowing two directions: (i) a s2o direction that first extracts subjects
and then extracts objects conditioned on the subjects extracted, and
(ii) a reversed o2s direction that first extracts objects and then ex-
tracts subjects. These two directions’ extractions share the Encoder
component. The inner structures of two directions are similar, so
here we only introduce the direction of s2o for space saving.
Subject Tagger is a binary tagging based module that aims to ex-
tract all subjects from an input sentence. For each token in the input
sentence, two probabilities are assigned to denote the possibilities
of it being the start token and end token of a subject. Specifically,
these two probabilities are computed with Eq.(3).

𝑝
𝑖,𝑠𝑡𝑎𝑟𝑡
𝑠 = 𝜎

(
W𝑠𝑡𝑎𝑟𝑡

𝑠 h𝑖𝑠 + b𝑠𝑡𝑎𝑟𝑡𝑠

)
𝑝
𝑖,𝑒𝑛𝑑
𝑠 = 𝜎

(
W𝑒𝑛𝑑

𝑠 h𝑖𝑠 + b𝑒𝑛𝑑𝑠

) (3)

where 𝑝𝑖,𝑠𝑡𝑎𝑟𝑡𝑠 and 𝑝𝑖,𝑒𝑛𝑑𝑠 represent the probabilities of the 𝑖-th to-
ken being the start token and end token of a subject respectively.

W
(.)
𝑠 ∈ R1×𝑑ℎ is a trainable matrix, b(.)

𝑠 ∈ R1 is a bias vector. In
all equations of this paper, 𝜎 denotes a sigmoid activation function.

In this study, we use a simple 1/0 tagging scheme, which means
a token will be assigned a 1 tag if its probability exceeds a certain
threshold or a 0 tag otherwise.
Subject-based Object Tagger is used to extract all objects condi-
tioned on the subjects extracted. To this end, it designs an iterative
tagging structure that takes the subjects extracted one by one and
extracts all the objects for each selected subject.

Specifically, given a selected subject, each token in the input
sentence are assigned two probabilities to denote the possibilities
of it being the start token and end token of an object that is related
to this selected subject. And these two kinds of probabilities are
computed with Eq. (4).

v𝑠_𝑘𝑠 = maxpool
(
h𝑠_𝑘_𝑠𝑡𝑎𝑟𝑡𝑠 , . . . , h𝑠_𝑘_𝑒𝑛𝑑𝑠

)
𝑝
𝑖,𝑠𝑡𝑎𝑟𝑡
𝑜 = 𝜎

(
W𝑠𝑡𝑎𝑟𝑡

𝑜

(
h𝑖𝑜 ◦ v𝑠_𝑘𝑠

)
+ b𝑠𝑡𝑎𝑟𝑡𝑜

)
𝑝
𝑖,𝑒𝑛𝑑
𝑜 = 𝜎

(
W𝑒𝑛𝑑

𝑜

(
h𝑖𝑜 ◦ v𝑠_𝑘𝑠

)
+ b𝑒𝑛𝑑𝑜

) (4)

where h𝑠_𝑘_𝑠𝑡𝑎𝑟𝑡𝑠 , . . . , h𝑠_𝑘_𝑒𝑛𝑑𝑠 are the vector representations of the
tokens in the 𝑘-th subject, so v𝑠_𝑘𝑠 can be viewed as a representation
for the 𝑘-th subject. maxpool(.) means the max-pooling operation.
𝑝
𝑖,𝑠𝑡𝑎𝑟𝑡
𝑜 and 𝑝𝑖,𝑒𝑛𝑑𝑜 are the probabilities of the 𝑖-th token being the
start and end tokens of an object related to the 𝑘-th subject respec-
tively. ◦ denotes a hadamard product operation. W(.)

𝑜 ∈ R1×𝑑ℎ is a
trainable matrix, and b

(.)
𝑜 ∈ R1 is a bias vector.

Cross Entropy based Losses As mentioned above, all the extrac-
tionmodules in two directionswork in amulti-task learningmanner.
Thus, both extraction modules in each direction have their own
loss functions. We denote the losses of above two tagger modules
as L𝑠1 and L𝑜1 respectively, and both of them are defined with a



binary cross entropy based loss, as shown in Eq. (5).
ce (𝑝, 𝑡) = − [𝑡𝑙𝑜𝑔𝑝 + (1 − 𝑡) 𝑙𝑜𝑔 (1 − 𝑝)]

L𝑠1 =
1

2 × 𝑙

∑︁
𝑚∈{start,end}

𝑙∑︁
𝑖=1

ce
(
𝑝
𝑖,𝑚
𝑠 , 𝑡

𝑖,𝑚
𝑠

)
L𝑜1 =

1

2 × 𝑙

∑︁
𝑚∈{start,end}

𝑙∑︁
𝑖=1

ce
(
𝑝
𝑖,𝑚
𝑜 , 𝑡

𝑖,𝑚
𝑜

) (5)

where ce(𝑝, 𝑡) is a binary cross entropy loss, 𝑝 ∈ (0, 1) is the pre-
dicted probability and 𝑡 is the true tag, 𝑙 is the number of tokens in
an input sentence.

Similarly, there are two tagger losses in the o2s direction. We
denote them as L𝑠2 and L𝑜2 respectively and they are computed
with the similar method as shown in Eq. (5).

3.3 RE
The proposed framework makes BiEPE output more s-o pairs, where
there are many noise pairs. This is harmful to the precision of BiRTE.
Thus, RE should have a strong classification ability. Here we use a
biaffine model [6, 10] for the RE module. It maintains a parameter
matrix for each relation, and an entity pair will be computed with
each relation-specific matrix to determine whether it possesses the
corresponding relation or not. Specifically, for an entity pair (𝑠𝑘 , 𝑜 𝑗 ),
we first obtain the representation vectors v𝑠_𝑘𝑟 and v𝑜_𝑗𝑟 for its two
entities. Then the possibility (denoted as 𝑝𝑖𝑟 ) of (𝑠𝑘 , 𝑜 𝑗 ) possessing
the 𝑖-th relation is computed. The process is shown in Eq. (6), where
W𝑖

𝑟 ∈ R (𝑑ℎ+1)×(𝑑ℎ+1) is the parameter matrix of the 𝑖-th relation.

v𝑠_𝑘𝑟 = maxpool
(
h𝑠_𝑘_𝑠𝑡𝑎𝑟𝑡𝑟 , . . . , h𝑠_𝑘_𝑒𝑛𝑑𝑟

)
v
𝑜_𝑗
𝑟 = maxpool

(
h
𝑜_𝑗_𝑠𝑡𝑎𝑟𝑡
𝑟 , . . . , h

𝑜_𝑗_𝑒𝑛𝑑
𝑟

)
𝑝𝑖𝑟 = 𝜎

([
v𝑠_𝑘𝑟

1

]⊤
W𝑖

𝑟

[
v
𝑜_𝑗
𝑟

1

]) (6)

Here we select the biaffine model mainly due to its following
two advantages. First, it maintains a matrix for each relation, which
can model the characteristics of a relation accurately. Second, its
probability computation mechanism makes it can accurately mine
the interactions between a subject and an object. Both advantages
are much helpful for improving the extraction precision.
RE Loss To train the RE component, we also define a cross entropy
based loss, as shown in Eq. (7), where R is the predefined relation
set and |R| is the number of total relations.

L𝑟 =
1

|R|

|R |∑︁
𝑖=1

ce
(
𝑝𝑖𝑟 , 𝑡

𝑖
𝑟

)
(7)

3.4 Share-aware Learning Mechanism
Totally, there are five extraction modules in BiRTE. During the
multi-task learning based training, each of them will form a relative
independent extraction task with the Encoder module. We use the
popular teacher forcing mode to train all the tasks except the ones
that ONLY take original sentence as input. Under this mode, each
task randomly selects some correct samples as input for training.
Besides, to alleviate the exposure bias issue [24], we merge some

Category NYT WebNLG NYT10 NYT11

Train Test Train Test Train Test Train Test
Normal 37013 3266 1596 246 59396 2963 53395 368
EPO 9782 978 227 26 5376 715 2100 0
SEO 14735 1297 3406 457 8772 742 7365 1
ALL 56195 5000 5019 703 70339 4006 62648 369

Table 1: Statistics of datasets. EPO and SEO refer to the en-
tity pair overlapping and single entity overlapping respec-
tively [31]. Note a sentence can belong to both EPO and SEO.

randomly generated negative samples into the correct samples and
use them together to train these tasks where the teacher forcing
mode used. The negative samples can simulate the real scenario in
the inference phase, which is helpful for training a robust model.
Accordingly, the mentioned exposure bias issue is alleviated greatly.
Finally, the overall loss of BiRTE is defined with Eq.(8).

L = L𝑠1 + L𝑜1 + L𝑠2 + L𝑜2 + L𝑟 (8)

However, we observe that the parameters in the shared Encoder
module will receive back propagated gradients from the parameters
of each extraction module. Consequently, the convergence rate of
the Encoder module will be much different from those in other ex-
traction modules. This will result in a convergence rate inconsistency
issue, which means if we set a unified learning rate for these five
extraction modules and the Encoder module, it would be difficult
for them to converge to their optimal points simultaneously. In
other words, some modules will be over-trained while others will
be under-trained under a unified learning rate.

So we propose a share-aware learning mechanism that assigns
different learning rates for different modules. The basic idea of this
mechanism is that the more tasks a module is shared by, the smaller
learning rate it should be assigned. For example, the Encoder module
should be assigned a smaller learning rate than other extraction
modules since it is shared by more tasks. Specifically, the proposed
learning mechanism assigns learning rates with Eq.(9).

𝜉𝑖 =

{
𝜉, 𝑘𝑖 = 1
(1+𝛿)
𝑓 (𝑘𝑖 ) ∗ 𝜉, 𝑘𝑖 > 1

(9)

where 𝜉 is a base learning rate, 𝜉𝑖 is the learning rate for the 𝑖-
th module and 𝑘𝑖 is the number of tasks that the 𝑖-th module is
shared by. For example, in BiRTE, the corresponding𝑘 of the Encoder
module would be 5 since this module is shared by all the five tasks,
while the corresponding 𝑘 of the subject tagger module in the s2o
direction would be 1 since this module is only used by its own task.
𝛿 ∈ [0, 1] is a regulatory factor that is used to finely adjust the
learning rate, and 𝑓 (.) is a mapping function that transforms the
input 𝑘𝑖 to a reasonable real value (often larger than 1) so as to
determine the major magnitude of the learning rate.

4 EXPERIMENTS
4.1 Experiment Settings
Datasets We evaluate BiRTE on following benchmark datasets:
NYT [18], WebNLG [9], NYT10 [18], and NYT11 [12]. To be fair, we
follow some latest work [20, 23, 24], which uses the preprocessed



NYT and WebNLG datasets released by [31], and uses the prepro-
cessed NYT10 and NYT11 datasets released by [21]. Some statistics
of these datasets are shown in Table 1.

Note that both NYT and WebNLG have two different versions
according to following two annotation standards: 1) annotating the
last token of the entities, and 2) annotating the whole entity span.
Different work chooses different versions of these datasets. For
convenience, we denote the datasets based on the first standard as
NYT∗ andWebNLG∗, and the datasets based on the second standard
as NYT and WebNLG. Obviously, the full annotated datasets can
reveal the true performance of a model better.

Besides, [24] point out that both NYT10 and NYT11 are far less
popular than either NYT or WebNLG, and they are usually used
to show the generalization capability of a model because most
test sentences in them belong to the Normal class. Thus, for space
saving, we adopt them only in the main experiment part.
Evaluation Metrics The standard micro precision, recall, and F1
score are used to evaluate the results. There are twomatch standards
for the RTE task: one is Partial Match that an extracted triple is
regarded as correct if the predicted relation and the head of both
subject entity and object entity are correct; and the other is Exact
Match that a triple is regarded as correct only when its entities and
relation are completely matched with a correct triple. To be fair, we
follow previous work [20, 23, 24] and use Partial Match on NYT∗
and WebNLG∗, use Exact Match on NYT and WebNLG.
Implementation Details AdamW [13] is used to train BiRTE. The
threshold for judgingwhether there a subject, an object, or a relation
is set to 0.5. In Eq.(9), 𝜉 is set to 1.5𝑒−4, the regulatory factor 𝛿 is set
to 0, and themapping function 𝑓 (.) is defined as an identity function.
The batch size is set to 18 on NYT, NYT∗, NYT10 and NYT11, and is
set to 6 on WebNLG and WebNLG∗. All involved hyperparameters
are determined based on the results on the development sets. Other
parameters are randomly initialized. In experiments, all the involved
BERT model refers to BERT (base). On all datasets, we run our model
5 times and the averaged results are taken as the final reported
results.
Baselines Following strong state-of-the-art models are taken as
baselines, including: ETL-Span [26],WDec [16], RSAN [27], RIN [19],
CasRel [24], TPLinker [23], StereoRel [22], PRGC [33], R-BPtrNet [3],
PMEI [20], and CGT [25]. Most results of these baselines are copied
from their original papers directly. Moreover, following previous
work [3, 20, 23, 24], we also implement a BiLSTM-encoder version
of BiRTE where 300-dimensional GloVe embeddings [17] and 2-
layer stacked BiLSTM are used. Some baselines did not report their
results on some datasets. In such case, we report the best results we
obtained (marked by★) by running the source code (if available). But
if a baseline did not report the results of its BiLSTM-encoder version,
wewould not obtain these results even if the source code is available:
because it needs to modify the provided source code in such case,
which will increase the concern of whether such modification is
correct and whether the obtained results are objective.

4.2 Experimental Results
MainResultsThemain results are shown in Table 2. On all datasets,
BiRTE achieves almost all the best results in term of F1 when com-
pared with the models that use the same kind of encoder (BERT or

BiLSTM). When considering the complete version of each model
where BERT used, BiRTE works much better than all the compared
baselines: it achieves the best results on almost all datasets in term
of recall and F1. BiRTE achieves slightly poor but still much com-
petitive precision results. This is in line with our previous analyses
that some noise pairs are extracted by the bidirectional framework,
which is harmful to precision. However, the proposed framework
brings much more benefits on recall, which makes BiRTE achieves
much higher F1 scores. Another interesting observation is that
BiRTE achieves far better results than CasRel, which proves the
correctness of our motivation.

Besides, BiRTE achieves better F1 results on all the full annotated
datasets. This is very meaningful because it indicates that BiRTE
will perform well when deployed in real scenarios where both the
full annotation standard and the exact match standard are usually
required. BiRTE also achieves much better results than all the com-
pared baselines on both NYT10 and NYT11, which indicates that
BiRTE has a good generalization capability.

In subsequent sections, we evaluate BiRTE from diverse aspects,
and all the results are obtained when the BERT-based encoder used.
Evaluations on Complex Sentences Here we evaluate BiRTE’s
ability for extracting triples from sentences that contain overlap-
ping triples and multiple triples. This ability is widely discussed
in existing models, and is an important metric to evaluate the ro-
bustness of a model. For fair comparison, we follow the settings of
some previous best models [3, 23, 24, 33], which are: (i) classifying
sentences according to the degree of overlapping and the number
of triples contained in a sentence, and (ii) conducting experiments
on different subsets of NYT∗ and WebNLG∗.

The results are shown in Table 3. We can see that BiRTE has great
superiority for handling complex sentences. On both datasets, it
achieves much better results than the compared baselines on most
cases. Moreover, BiRTE achieves more performance improvement
when handling the sentences of SEO class. This is mainly because
that a single entity in a SEO sentence may associate with multiple
triples, thus the existing models (even including the non-tagging
based models like TPLinker) are more likely to suffer from the
ground entity extraction failure issue on the SEO sentences than on
other types of sentences: once the extraction of an entity in some
SEO triples is failed, all the associated triples of this entity would
not be extracted either. But the bidirectional framework in BiRTE
can effectively overcome such deficiency and the mentioned issue
almost has no effect on it when handling the SEO sentences. This is
also the reason why BiRTE performs well on sentences that contain
multiple triples. Note R-BPtrNet [3] also achieves very competitive
results, which is partly because it uses extra entity type knowledge.
Detailed Evaluations Here we make three kinds of detailed eval-
uations on BiRTE, and the results are shown in Table 4.

First, we evaluate the contributions of the proposed bidirectional
extraction framework from following four aspects.

(1)We evaluate whether the proposed bidirectional extraction
framework is superior to the unidirectional extraction frameworks.
To this end, we implement following two variants of BiRTE: (i)
BiRTE𝑠2𝑜 , a variant that only uses the s2o direction to extract entity
pairs, based on which the triples are extracted; (ii) BiRTE𝑜2𝑠 , a vari-
ant that only uses the o2s direction to extract entity pairs, based on
which the triples are extracted. Results show that the performance



Model
Partial Match Exact Match

NYT∗ WebNLG∗ NYT WebNLG
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

ETL-Span [26] 84.9 72.3 78.1 84.0 91.5 87.6 85.5 71.7 78.0 84.3 82.0 83.1
WDec [16] – – – – – – 88.1 76.1 81.7 – – –
RSAN [27] – – – – – – 85.7 83.6 84.6 80.5 83.8 82.1
RIN [19] 87.2 87.3 87.3 87.6 87.0 87.3 83.9 85.5 84.7 77.3 76.8 77.0
CasRel𝐿𝑆𝑇𝑀 [24] 84.2 83.0 83.6 86.9 80.6 83.7 – – – – – –
PMEI𝐿𝑆𝑇𝑀 [20] 88.7 86.8 87.8 88.7 87.6 88.1 84.5 84.0 84.2 78.8 77.7 78.2
TPLinker𝐿𝑆𝑇𝑀 [23] 83.8 83.4 83.6 90.8 90.3 90.5 86.0 82.0 84.0 91.9 81.6 86.4
R-BPtrNet𝐿𝑆𝑇𝑀 ‡ [3] 90.9 91.3 91.1 90.7 94.6 92.6 – – – – – –
CGT𝑈𝑛𝑖𝐿𝑀 [25] 94.7 84.2 89.1 92.9 75.6 83.4 – – – – – –
CasRel𝐵𝐸𝑅𝑇 [24] 89.7 89.5 89.6 93.4 90.1 91.8 89.8★ 88.2★ 89.0★ 88.3★ 84.6★ 86.4★
PMEI𝐵𝐸𝑅𝑇 [20] 90.5 89.8 90.1 91.0 92.9 92.0 88.4 88.9 88.7 80.8 82.8 81.8
TPLinker𝐵𝐸𝑅𝑇 [23] 91.3 92.5 91.9 91.8 92.0 91.9 91.4 92.6 92.0 88.9 84.5 86.7
StereoRel𝐵𝐸𝑅𝑇 [22] 92.0 92.3 92.2 91.6 92.6 92.1 92.0 92.3 92.2 – – –
PRGC𝐵𝐸𝑅𝑇 [33] 93.3 91.9 92.6 94.0 92.1 93.0 93.5 91.9 92.7 89.9 87.2 88.5
R-BPtrNet𝐵𝐸𝑅𝑇 ‡ [3] 92.7 92.5 92.6 93.7 92.8 93.3 – – – – – –
BiRTE𝐿𝑆𝑇𝑀 86.5 89.0 87.7 90.5 91.6 91.0 86.4 87.1 86.7 85.2 87.3 86.2
BiRTE𝐵𝐸𝑅𝑇 92.2 93.8 93.0 93.2 94.0 93.6 91.9 93.7 92.8 89.0 89.5 89.3

Model
Partial Match Exact Match

NYT10 NYT11 NYT10 NYT11
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

PMEI𝐿𝑆𝑇𝑀 [20] 79.1 67.2 72.6 56.0 58.6 57.2 75.4 65.8 70.2 55.3 57.8 56.5
CasRel𝐵𝐸𝑅𝑇 [24] 77.7 68.8 73.0 50.1 58.4 53.9 76.8★ 68.0★ 72.1★ 49.1★ 56.4★ 52.5★
StereoRel𝐵𝐸𝑅𝑇 [22] 80.0 67.4 73.2 53.8 55.4 54.6 – – – – – –
PMEI𝐵𝐸𝑅𝑇 [20] 79.1 70.4 74.5 55.8 59.7 57.7 77.3 69.7 73.3 54.9 58.9 56.8
TPLinker𝐵𝐸𝑅𝑇 [23] 78.9★ 71.1★ 74.8★ 55.9★ 60.2★ 58.0★ 78.5★ 68.8★ 73.4★ 54.8★ 59.3★ 57.0★
BiRTE𝐿𝑆𝑇𝑀 79.0 68.8 73.5 55.1 60.4 57.6 76.1 67.4 71.5 54.1 60.5 57.1
BiRTE𝐵𝐸𝑅𝑇 80.6 71.8 76.0 56.4 62.0 59.1 80.1 71.4 75.5 55.0 61.2 57.9

Table 2: Main experiments. Note CGT uses UniLM [5]. ‡: R-BPtrNet uses extra entity type features while all other models not.

Model NYT∗ WebNLG∗

Normal SEO EPO T = 1 T = 2 T = 3 T = 4 T ≥ 5 Normal SEO EPO T = 1 T = 2 T = 3 T = 4 T ≥ 5
CasRel𝐵𝐸𝑅𝑇 [24] 87.3 91.4 92.0 88.2 90.3 91.9 94.2 83.7 89.4 92.2 94.7 89.3 90.8 94.2 92.4 90.9
TPLinker𝐵𝐸𝑅𝑇 [23] 90.1 93.4 94.0 90.0 92.8 93.1 96.1 90.0 87.9 92.5 95.3 88.0 90.1 94.6 93.3 91.6
PRGC𝐵𝐸𝑅𝑇 [33] 91.0 94.0 94.5 91.1 93.0 93.5 95.5 93.0 90.4 93.6 95.9 89.9 91.6 95.0 94.8 92.8
R-BPtrNet𝐵𝐸𝑅𝑇 [3] 90.4 94.4 95.2 89.5 93.1 93.5 96.7 91.3 89.5 93.9 96.1 88.5 91.4 96.2 94.9 94.2
BiRTE𝐵𝐸𝑅𝑇 91.4 94.7 94.2 91.5 93.7 93.9 95.8 92.1 90.1 95.9 94.3 90.2 92.9 95.7 94.6 92.0

Table 3: F1 scores on sentences with different overlapping pattern and different triplet number. Results of CasRel are copied
from TPLinker directly. “T” is the number of triples contained in a sentence.

of both variants drops on all datasets, which shows the superiority
of the proposed bidirectional framework. Especially, both variants
achieve lower recalls, which indicates again that the unidirectional
extraction framework based models are sensitive to the ground
entity extraction failure issue. While in BiRTE, the two directions’
s-o pair extractions can boost each other, so the mentioned issue is
alleviated greatly, which is much helpful for recall.

(2)We evaluate whether the proposed bidirectional extraction
framework does be helpful for extracting better ground entities

than the unidirectional frameworks. To this end, we compare the
ground entities’ extraction results between BiRTE, BiRTE𝑠2𝑜 , and
BiRTE𝑜2𝑠 . The results are shown in Table 5. We can see that in
each direction, BiRTE achieves much better extraction results than
its variant of the same direction. This is mainly because that with
the help of the multi-task learning mechanism, the ground entity
extractions of two directions can boost each other by the explicitly
injected context features through the shared Encoder component,
which is much helpful for the extraction results of each direction.



Model
Partial Match Exact Match

NYT∗ WebNLG∗ NYT WebNLG
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

BiRTE𝐵𝐸𝑅𝑇 92.2 93.8 93.0 93.2 94.0 93.6 91.9 93.7 92.8 89.0 89.5 89.3
BiRTE𝑠2𝑜 91.5 91.3 91.4 92.0 90.4 91.2 91.5 91.0 91.2 88.3 87.0 87.6
BiRTE𝑜2𝑠 91.4 91.0 91.2 91.8 90.5 91.1 91.5 90.8 91.1 88.5 87.5 88.0
BiRTE𝐹𝑖𝑛𝑒𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 90.4 91.2 90.8 91.0 91.6 91.3 89.7 90.1 89.9 84.0 85.6 84.8
BiRTE𝐶𝑜𝑎𝑟𝑠𝑒𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 90.9 92.3 91.6 91.9 92.1 92.0 90.5 91.0 90.7 85.7 87.3 86.5
BiRTE𝑂𝑛𝑒𝐿𝑟 91.0 92.4 91.7 92.5 93.6 93.0 91.2 91.8 91.5 88.1 89.0 88.5
BiRTE𝑢𝑖 𝑓 91.6 92.9 92.2 92.7 93.8 93.2 91.3 92.5 91.9 88.8 88.6 88.7
BiRTE𝑡𝑟𝑢 92.1 93.4 92.7 93.2 93.8 93.5 91.5 93.2 92.3 88.9 89.3 89.1
BiRTE𝐵𝐼𝑂 92.1 93.7 92.9 93.0 93.9 93.4 91.9 93.8 92.8 88.8 89.5 89.1
BiRTE2𝑠𝑡𝑒𝑝 89.5 92.3 90.9 89.9 91.9 90.9 89.0 91.5 90.2 84.7 87.6 86.1
BiRTE𝐿𝑖 91.0 93.6 92.3 91.6 92.9 92.2 90.5 93.9 92.2 87.2 89.3 88.2

Table 4: Results of detailed evaluations.

Models Direction NYT∗ WebNLG∗ NYT WebNLG

BiRTE s2o 95.0 95.3 94.2 91.0
o2s 94.8 95.6 93.9 91.1

BiRTE𝑠2𝑜 s2o 93.6 92.6 93.1 89.3
BiRTE𝑜2𝑠 o2s 93.2 92.8 92.8 89.5

Table 5: F1 results of the ground entity extraction.

Models NYT∗ WebNLG∗ NYT WebNLG
ETL-Span 54.3 56.1 56.8 60.2
CasRel 49.7 48.5 55.7 51.8
BiRTE𝑠2𝑜 55.2 39.6 56.0 42.8
BiRTE𝑜2𝑠 53.5 51.2 54.8 52.2
BiRTE 9.7 5.4 11.0 9.3

Table 6: Proportions (%) of triples that are not extracted due
to the ground entity extraction failure issue.

(3) We compare the proportion of the triples that are not ex-
tracted due to the ground entity extraction failure issue between
BiRTE and other tagging based methods that take an unidirectional
extraction framework. This proportion can quantitatively demon-
strate both the severity caused by the mentioned issue and the
practical effect of the proposed bidirectional extraction framework.
The results are shown in Table 6.

We can see that for all the unidirectional extraction framework
based models, almost half of the failed extracted triples are caused
by the mentioned ground entity extraction failure issue. While for
BiRTE, this proportion drops sharply. These results show that the
harm of the mentioned issue is eliminated greatly by the proposed
bidirectional framework.

(4) We evaluate whether a simple combination of two paralleled
extraction components can also performs well like the proposed
framework. To this end, we implement following two variants of
BiRTE, both ofwhich are pipeline-basedmodels. (i) BiRTE𝐹𝑖𝑛𝑒𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 ,
a model that splits Subject Tagger, Object Tagger, Subject-based

Object Tagger, Object-based Subject Tagger, and RE into five sep-
arated models that do not share the Encoder component; and (ii)
BiRTE𝐶𝑜𝑎𝑟𝑠𝑒𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 , a model that splits BiEPE and RE into two
separated models that do not share the Encoder component.

Results show that the performance of both variants drops sharply
on all datasets, which indicates that the proposed extraction frame-
work should NOT be viewed as a simple combination of two indi-
vidual extraction components. In fact, under the multi-task learning
mechanism, the Encoder-share structure in our framework enables
different modules complement and boost each other, which is much
helpful for the performance of the whole RTE task. For example,
in each direction, either Subject Tagger or Object Tagger will push
parameters in Encoder to be updated in the way that is beneficial for
its own extraction. As these two taggers are performed alternately
in the multi-task learning manner, features that are beneficial for
the subject extraction are injected into the parameters of Encoder by
the back propagated gradients, based on which the object extraction
is performed, and vice versa. Thus, the subject-related features are
implicitly used for object extraction, which makes two taggers com-
plement and boost each other.. Besides, both variants have a greater
F1 degradation on WebNLG∗ and WebNLG than that on other two
datasets. This is mainly because WebNLG is a sparse dataset for it
contains a smaller number of training samples but a larger number
of relations. Thus on WebNLG, the scarcity of training samples can
be effectively compensated by the proposed framework by making
the correlated modules boost each other.

Second, we evaluate the contributions of the proposed share-
aware learning mechanism from following two aspects.

(1) We evaluate the performance difference between using and
without using the proposed learning mechanism. To this end, we
implement BiRTE𝑂𝑛𝑒𝐿𝑟 , a variant of BiRTE that uses an identical
learning rate. From the comparison results we can see that the
performance of BiRTE𝑂𝑛𝑒𝐿𝑟 drops obviously on all datasets, which
indicate: (i) the convergence rate inconsistency issue does exist in the
models where contain some shared modules; and (ii) the proposed
learning mechanism is effective for addressing this issue.



Model
Partial Match Exact Match

NYT∗ WebNLG∗ NYT WebNLG
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

ETL-Span𝐵𝑖𝐷𝑖𝑟 84.6 73.5(↑) 78.7(↑) 83.3 92.0(↑) 87.4 85.2 73.0(↑) 78.6(↑) 83.5 83.1(↑) 83.3(↑)
CasRel𝐵𝑖𝐷𝑖𝑟 89.0 91.1(↑) 90.0(↑) 92.6 91.2(↑) 91.9(↑) 89.0 90.1(↑) 89.5(↑) 87.1 85.1(↑) 86.1
ETL-Span𝑆𝑎𝐿𝑟 85.3(↑) 73.0(↑) 78.7(↑) 84.3(↑) 91.7(↑) 87.8(↑) 86.2(↑) 72.3(↑) 78.6(↑) 83.0 84.6(↑) 83.8(↑)
CasRel𝑆𝑎𝐿𝑟 90.1(↑) 89.9(↑) 90.0(↑) 93.5(↑) 90.5(↑) 92.0(↑) 90.1(↑) 89.1(↑) 89.6(↑) 87.9 87.1(↑) 87.5(↑)

Table 7: Adaptability evaluations. “↑” denotes the performance is increased.

(2) We evaluate the influence of the mapping function in the
proposed learning mechanism. To this end, we explore following
two kinds of mapping functions. (i) An uniform increasing function
𝑓 (𝑘𝑖 ) = 1 + 2(𝑛𝑖 − 1)𝑘𝑖/(𝑛 − 1) ∈ [1, 1 + 2𝑘𝑖 ], where 𝑛 is the total
number of epochs, and 𝑛𝑖 is the current epoch number. (ii) A trun-
cated function 𝑓 (𝑘𝑖 ) =𝑚𝑖𝑛(𝑘𝑖 , 1+2(𝑛𝑖 −1)𝑘𝑖/(𝑛−1)) ∈ [1, 𝑘𝑖 ]. We
denote the variants of BiRTE that use these two mapping functions
as BiRTE𝑢𝑖 𝑓 and BiRTE𝑡𝑟𝑢 respectively. Results show that the map-
ping function has an obvious influence on the performance. But
all the models that use the proposed learning mechanism achieve
significant better results than BiRTE𝑂𝑛𝑒𝐿𝑟 , which confirms again
the proposed learning mechanism is effective. Note the mapping
function selection is still an open issue and calls for further research.

Third, we conduct experiments to answer following two issues
to further demonstrate the effectiveness of BiRTE.

(1) BiRTE uses the 1/0 tagging scheme in BiEPE. However, there
are other widely used schemes like BIO, which can provide more
richful label information than the 1/0 scheme. Thus, there is an
issue: whether it would be better when the BIO scheme used?

To answer this issue, we implement BiRTE𝐵𝐼𝑂 , a variant that
uses the BIO scheme. We can see that the performance of BiRTE𝐵𝐼𝑂
drops slightly on most of cases except on NYT where it achieves
close results with BiRTE. In fact, there are two advantages in the 1/0
scheme. First, its labels can realize the roles of most labels in the
BIO scheme. Second, it reduces the complexity of a tagging model
because with this simpler scheme, for each token, a model only
needs to distinguish whether it is an entity token or not, other than
to distinguish whether this token is a beginning or inside token
of an entity, or not an entity token. Obviously, this simplification
reduces the risk of introducing tagging errors.

(2) The ground entity extraction failure issue can also be solved
by a simple strategy that firstly extracting all entities without distin-
guishing subject and object, and then using the RE module to clas-
sify all entity pairs. Accordingly, there would be an issue: whether
a simpler 2-step extraction strategy would work better?

To answer this issue, we implement BiRTE2𝑠𝑡𝑒𝑝 , a 2-step extrac-
tion based model. Results show that the performance of BiRTE2𝑠𝑡𝑒𝑝
drops sharply compared with BiRTE. Especially, the degradation of
its precision is far larger than that of its recall on all datasets. This
indicates that by considering all combinations of entity pairs, the
ground entity extraction failure issue is alleviated to some extent.
However, among these combinations, there are lots of noise pairs
that have no any relation, which results in a more significant degra-
dation in precision. Consequently, its F1 score drops. These results
indicate BiRTE2𝑠𝑡𝑒𝑝 is not a good choice to address the mentioned

issue because it often results in far larger degradation in precision,
which neutralizes the benefits from the improvement of recall.
Adaptability Evaluations In fact, both the proposed bidirectional
extraction framework and the proposed share-aware learning mech-
anism are adaptive and can be easily transplanted to other models.
Here we evaluate their adaptabilities by transplanting them to
CasRel and ETL-Span. Both these selected two models are state-of-
the-art tagging based methods and have a shared Encoder.

Specifically, we denote the newmodels that use the proposed bidi-
rectional extraction framework as CasRel𝐵𝑖𝐷𝑖𝑟 and ETL-Span𝐵𝑖𝐷𝑖𝑟

respectively. Both CasRel and ETL-Span first extract subjects, then
extract objects and relations simultaneously. Here in their new vari-
ants, we simply merge the triples extracted from two directions
as final outputted triples. We denote the new models that use the
proposed share-aware learning mechanism as ETL-Span𝑆𝑎𝐿𝑟 and
CasRel𝑆𝑎𝐿𝑟 respectively. The results are shown in Table 7.

We can see that on almost all datasets, both CasRel𝐵𝑖𝐷𝑖𝑟 and ETL-
Span𝐵𝑖𝐷𝑖𝑟 achieve better performance than their original versions
in term of F1 and recall. These results further confirm that the bidi-
rectional extraction framework can well address the ground entity
extraction failure issue, which is much helpful for recall. These two
new models’ precision scores are lower than their original versions,
this is because that there are more noise introduced by the bidirec-
tional extraction framework, thus a stronger relation classification
model is required. For example, when replacing the biaffine model
with a common linear classification model that takes the concate-
nation of two entities’ representations as input, the performance of
BiRTE (BiRTE𝐿𝑖 in Table 4) drops accordingly. We can also see that
when the proposed share-aware learning mechanism used, both
CasRel𝑆𝑎𝐿𝑟 and ETL-Span𝑆𝑎𝐿𝑟 achieve better results than their orig-
inal versions on both datasets under almost all evaluation metrics,
even slightly better than CasRel𝐵𝑖𝐷𝑖𝑟 and ETL-Span𝐵𝑖𝐷𝑖𝑟 .

5 CONCLUSIONS
In this paper, we propose a simple but effective RTE model. There
are twomain contributions in ourwork. First, we observe the ground
entity extraction failure issue existed in existing tagging based RTE
methods, and propose a bidirectional extraction framework to ad-
dress it. Second, we observe the convergence rate inconsistency issue
existed in the share structures, and propose a share-aware learning
mechanism to address it. We conduct extensive experiments on
multiple benchmark datasets to evaluate the proposed model from
diverse aspects. Experimental results show that the two proposed
mechanisms are effective and adaptive, and they help our model
achieve state-of-the-art results on all of these benchmark datasets.
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