skip to main content
10.1145/3488560.3510017acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
abstract

Near Real Time AI Personalization for Notifications at LinkedIn

Published: 15 February 2022 Publication History

Abstract

Notifications at LinkedIn are very crucial for our members to stay informed about their network, discover professionally relevant content, conversations and courses, as well as identify potential career opportunities. For the Notifications AI team, our mission is to use AI to notify the right members, about the right content, at the right time and frequency through the right channel (push, in app or email) to maximize member value. In this talk we will give an overview of the AI systems and models behind these decisions.
We will present the candidate generation systems as well as the final relevance layer, built on top of the Air Traffic Controller (ATC), to enable volume optimization, notification channel (badge, push or email) selection and state aware message spacing based delivery time optimization. We describe how we formulated a multi-objective optimization problem, considering multiple objectives that capture member and business impact on the entire ecosystem. This problem considers three types of utilities: whether a member visits, their engagement on the notifications, and their overall engagement on LinkedIn. We will explain the final decision function, derived from the multi-objective optimization formulation, and show that it can be applied in a streaming fashion. The final decision function is tuned online, through a hyperparameter tuning solution developed at Linkedin which allows us to fine tune tradeoffs in the multi-objective optimization approach. We will conclude with a discussion on some of the wins this has enabled, managing most of the notifications sent to our 774million+ members.

Supplementary Material

MP4 File (WSDM-Near real time AI personalization for notifications at LinkedIn - Ajith Muralidharan.mp4)
Notifications at LinkedIn are very crucial for our members to stay informed about their network, discover professionally relevant content, conversations and courses, as well as identify potential career opportunities. For the Notifications AI team, our mission is to use AI to notify the right members, about the right content, at the right time and frequency through the right channel (push, inapp or email) to maximize member value. In this talk we will give an overview of the AI systems behind these decisions, covering the different systems that process both near real time, and other less time sensitive notifications at LinkedIn. We will present how we formulated a multiple objective optimization problem for volume and delivery optimization across different channels, built the underlying models and optimization layers and delivered a personalized and optimized solution in near real time.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WSDM '22: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining
February 2022
1690 pages
ISBN:9781450391320
DOI:10.1145/3488560
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 15 February 2022

Check for updates

Author Tags

  1. multi-objective optimization
  2. notifications ai

Qualifiers

  • Abstract

Conference

WSDM '22

Acceptance Rates

Overall Acceptance Rate 498 of 2,863 submissions, 17%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 150
    Total Downloads
  • Downloads (Last 12 months)28
  • Downloads (Last 6 weeks)3
Reflects downloads up to 13 Feb 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media