skip to main content
10.1145/3488560.3510018acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
abstract

The Incentives Platform at Lyft

Published: 15 February 2022 Publication History

Abstract

The Incentives Platform team at Lyft has developed a platform for applying new methodologies at the intersection of causal inference, machine learning, and reinforcement learning to problems at scale. We utilize heterogeneous treatment effect algorithms to predict how different users (riders, drivers) will respond to a specific treatment (coupon, incentive, message, etc.). We then can apply various optimization algorithms to choose which users get which treatment while using bandit methodologies to balance an explore/exploit trade-off. This platform dramatically increases the degree to which we can customize the user experience and hit business goals while reducing the operational load of doing so.
This platform lets us understand how our users differ; letting us optimally target users based on individual treatment effect predictions; and evaluate the results of these predictions. The platform is built in a flexible way to allow us to plug-and-play with different algorithms, which lets us compare performance and develop improvements. We have integrated Off-Policy Evaluation into the platform allowing us to make unbiased (backtesting) evaluations of causal effects, without needing to run an AB test.
While the scale of our data and complexity of these algorithms requires substantial engineering infrastructure, we have built the platform in a modular way that allows for separation between the science and engineering code. This makes it easy for data scientists to iterate on these models without worrying (as much) about infrastructure or distributed systems.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WSDM '22: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining
February 2022
1690 pages
ISBN:9781450391320
DOI:10.1145/3488560
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 15 February 2022

Check for updates

Author Tags

  1. heterogeneous treatment effects
  2. personalization
  3. targeting models

Qualifiers

  • Abstract

Conference

WSDM '22

Acceptance Rates

Overall Acceptance Rate 498 of 2,863 submissions, 17%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 80
    Total Downloads
  • Downloads (Last 12 months)13
  • Downloads (Last 6 weeks)1
Reflects downloads up to 13 Feb 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media