
Processing-in-SRAM Acceleration for Ultra-Low Power Visual 3D
Perception

Yuquan He, Songyun Qu, Gangliang Lin, Cheng Liu, Lei Zhang, Ying Wang*
Institute of Computing Technology, Chinese Academy of Sciences

University of Chinese Academy of Sciences, Beijing, China
{heyuquan20b,qusongyun18z,lingangliang21s,liucheng,zlei,wangying2009}@ict.ac.cn

Abstract
Real-time ego-motion tracking and 3D structural estimation are

the fundamental tasks for the ubiquitous cyper-physical systems, and
they can be conducted via the state-of-the-art Edge-Based Visual
Odometry (EBVO) algorithm. However, the intrinsic data-intensive
process of EBVO emplaces a memory-wall hurdle in practical de-
ployment on conventional von-Neumann-style computing systems.
In this work, we attempt to leverage SRAM based processing-in-
memory (PIM) technique to alleviate such memory-wall bottleneck,
so as to optimize the EBVO systematically from the perspectives of
the algorithm layer and physical layer. In the algorithm layer, we
first investigate the data reuse patterns of the essential computing
kernels required for the feature detection and pose estimation steps in
EBVO, and propose PIM friendly data layout and computing scheme
for each kernel accordingly. We distill the basic logical and arithmeti-
cal operations required in the algorithm layer, and in the physical
layer, we propose a novel bit-parallel and reconfigurable SRAM-PIM
architecture to realize the operations with high computing precision
and throughput. Our experimental result shows that the proposed
multi-layer optimization allows for high tracking accuracy of EBVO,
and it can improve 11x processing speed and reduce 20x energy
consumption compared to the CPU implementation.

1 Introduction
Real-time visual simultaneous localization and mapping (vSLAM)

is a fundamental technique to unfold the applications of cyber physi-
cal systems, such as robotics, autonomous driving, VR/AR, etc. The
visual odometry (VO) frontend of a vSLAM system is an indispensable
component for the smart devices to estimate the position and orien-
tation of a camera and the 3D structure of the physical environment.
Among the various VO models such as feature-based [18], direct [5]
or hybrid [7] methods, recently a class of edge-based VO (EBVO)
[11, 20, 27] is attracting a greater interest, thanks to its semi-dense
reconstruction capability, illumination robustness and large conver-
gence basin. However, EBVO is intrinsically data-intensive which
inevitably suffers from the memory-wall bottleneck when deployed
onto conventional computing systems. To prove this phenomenon,
we leverage Valgrind [19] to profile the computing bottleneck of
REVO [20] which is a state-of-the-art EBVO implementation. On a

DAC ’22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9142-9/22/07.
https://doi.org/10.1145/3489517.3530446

x86 desktop PC, 43% of the total instructions are about data move-
ment, whereas on ARM processors this percentage increases to 51%.
Given the fact that data-transfer operations incur 10x more latency
and 100x higher energy than arithmetic ones [13], this memory-wall
significantly limits the computation throughput and increases energy
consumption.

To alleviate such penalties, a promising approach is to embed the
computation engine within the memory array, known as Processing-
In-Memory (PIM). Compared to othermemory devices such as ReRAM
[22], DRAM [21] and STT-RAM[10], SRAM based PIM is of partic-
ular interest thanks to its mature CMOS manufacture process, low
access latency, and almost infinite write endurance. Prior works of
SRAM PIMs on domain-specific acceleration, such as CAM [14] or
CNN inference engines [3, 23], reshape the memory architecture
to perform relatively simple computational kernels. However, for
the versatile computing steps of EBVO as shown in Fig.1, designing
specific PIM accelerators for each computing kernel is too costly. In
contrast, SRAM PIMs also have great potential of general purpose
and reconfigurable computing via the bit-serial [4] or bit-parallel
[16] solutions. However, these PIM architectures mainly focus on
basic logical and arithmetical operations that cannot cover all the
computing kernels required by EBVO, and not to mention the lack
of study on algorithm-specific data layout and computing pipeline
optimization for EBVO.

With this backdrop, we opt to enrich the functionalities of SRAM-
PIM for the sake of high-precision EBVO acceleration. To begin with,
we analyze the critical steps of EBVO as shown in Fig.1. (a) Edge
detection for each input frame. This step incurs low-pass (LPF), high-
pass (HPF) image filters and non-maximum suppression (NMS). (b)
Estimation of per-frame camera pose via edge alignment. This incurs
the warping of every single feature point, and an iterative Levenberg-
Marquardt (LM) solver [15] to minimize the warping residual. To
obtain high-quality EBVO tracking and 3D reconstruction, the calcu-
lation of both steps should be conducted as precise as possible. Based
on the above analysis, we propose a novel SRAM-PIM architecture
with the systematic support for the EBVO software stack, namely the
algorithm layer and the physical layer.

(1) In the algorithm layer, we propose to leverage PIM friendly com-
putation kernels to realize the two critical steps in EBVO, as well as the
optimized data layout and computing schedules for PIM implementa-
tion. Specifically, for the edge detection step, we study the featured
data reuse patterns of LPF, HPF and NMS, and redesign in-memory
pipelines to reduce computation redundancy and data movement in
the original algorithm implementation. For the PIM mapping of the
per-frame pose estimation step, we adopt high-precision quantization
for feature warping and the computation of Jacobian and Hessian

* Corresponding author.

295

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3489517.3530446
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3489517.3530446&domain=pdf&date_stamp=2022-08-23

Residual: 𝑟𝑡 = 𝐷𝑇𝑘 𝑝𝑡′
Jacobian: 𝐽𝑡 = 𝜕𝑟𝑡𝜕𝜉
Hessian: 𝐻 = σ𝑡 𝐽𝑡𝑇𝐽𝑡
Steepest Decent: 𝑏 = σ𝑡 𝐽𝑡𝑇𝑟𝑡
Solve: ∆𝜉 = 𝐻 + 𝜆𝐼 −1𝑏

Update pose: መ𝜉 = ∆𝜉 ⊙ 𝜉
(c) Levenberg-Marquardt Solver

Distance Transform Map: 𝐷𝑇𝑘
Keyframe: 𝐹𝑘

𝑃 𝑃′𝜋−1 𝑝𝑡 = 𝑑 𝑢 − 𝑐𝑥 /𝑓𝑑 𝑣 − 𝑐𝑦 /𝑓𝑑 𝜋 𝑃′ = 𝑓 ⋅ 𝑥/𝑧 − 𝑐𝑥𝑓 ⋅ 𝑦/𝑧 − 𝑐𝑦
𝑝𝑡 𝑝𝑡′

Current frame: 𝐹𝑡
6 DOF pose: 𝜉

exp 𝜉 ⋅ 𝑃 =𝑅𝜉 ⋅ 𝑃 + 𝑇𝜉

(b) Feature Warping

NMS

(a) Edge Detection

LPF HPF

Figure 1: Processing pipeline of EBVO. (a) Edge detection; (b) Feature warping; The detailed formulas are shown in Fig.5-a and
Fig.5-b; (c) LM solver; The Jacobian 𝐽𝑡 is shown in Fig.5-c.

matrices. We also reschedule the computing phases of the arithmetic
operators in EBVO for the sake of data alignment in SRAM and high
throughput PIM.

(2) In the physical layer, we propose a bit-parallel SRAM-PIM ar-
chitecture to realize the algorithmic requirements. We are inspired by
the bit-parallel PIM engine with reconfigurable computing precision
in [16], and we further enrich the PIM functionalities to perform
various operations, such as saturation, min/max and division. On
top of this we build up the complicated arithmetic operators of the
various computing kernels required by the edge detection and pose
estimation in EBVO.

To summarize, this work makes the following contributions:

• We propose a novel processing-in-SRAM accelerator which
allows for real-time and ultra-low power EBVO. To our best
knowledge, this work is the first demonstration of PIM accel-
eration in the field of VO/vSLAM.

• To boost the performance systematically, we investigate the
PIM friendly algorithm implementation, data mapping and
computing schedule for the data-intensive computing kernels
of the EBVO stack. On top of this, we distill the essential arith-
metical operations that can be efficiently realized in PIM, and
we propose an enhanced bit-parallel SRAM-PIM architecture
as the hardware backup.

• We perform software simulation using a customized EBVO
system and PIM emulator, and hardware simulation using the
90nm CMOS technology. Compared to the baseline embed-
ded MCU of the same CMOS technology, the PIM accelerator
achieves an overall 11x acceleration of computing speed with
a 20x reduction of power consumption.

2 BACKGROUND

2.1 vSLAM Oriented Accelerators
Hardware accelerators are designed to alleviate the computation

burden of specific algorithmic components of VO/vSLAM systems,
such as feature detection and state estimation, on resource-constrained
platforms. eSLAM [17] accelerates the procedures of ORB feature
detection and matching of the ORB-SLAM [18] algorithm on the

ZYNQ7000 FPGA platforms, and achieve a much faster tracking speed
than the embedded CPU and even a desktop PC. Navion [25] exhibits
an ASIC design that accelerates sparse feature tracking and sensor
fusion with the inertial measurement unit (IMU), and allows for
ultra-low power visual-inertial odometry (VIO) on nano drones. For
off-the-shelf products, Intel releases its RealSense T265 tracking cam-
era [9] which allows for near-sensor VIO on the Movidius Myraid
2 VPU. The Microsoft Hololens AR glasses also integrate the HPU
[26] accelerator for real-time pose estimation and object rendering.
Despite the various FPGA/ASIC based application cases, PIM based
non-von-Neumann-style accelerators for VO/vSLAM have not been
explored thus far.
2.2 General Purpose SRAM PIM Architectures

The general purpose SRAM PIMs typically leverage the basic ar-
chitectural prototype [1] that can compute AND/NOR logic directly
on the bitlines of SRAM array using two sense amplifiers (SA). To
perform versatile arithmetic, the work in [4] proposes bit-serial algo-
rithms for fixed-/float-point add/sub/ mul/div. [8] further explores the
more complicated functions such as square root, sin/cos etc. However,
the bit-serial designs have high computational complexity, and they
also require bit-transpose of operands before and after the compu-
tation, which increases the latency as well. By contrast, the work in
[16] proposes a bit-parallel PIM that allows for high-throughput and
low-power computation of addition and multiplication. [2] compares
the performance of bit-serial/parallel schemes, and reveals that both
have similar costs of power and area while bit-parallel computation
has much lower latency.
2.3 Preliminaries of EBVO

The major task of EBVO is to track the camera pose via edge align-
ment, as is depicted in Fig.1. To begin with, we denote the current
input frame as 𝐹𝑡 and the reference keyframe as 𝐹𝑘 . The sets of edge
features 𝑝𝑡 and 𝑝𝑘 are detected in 𝐹𝑡 and 𝐹𝑘 accordingly. During the
pose estimation, each feature 𝑝𝑡 is warped to 𝐹𝑘 , denoted as 𝑝 ′𝑡 , and
matched with the nearest 𝑝𝑘 to assess the residual. By computing the
Jacobian and Hessian matrices, the pose adjustment Δb is obtained
via LM solver to correct the pose of 𝐹𝑡 . This process is conducted
iteratively to minimize the warp residual, and finally we obtain a

296

1/16 2/16 1/16

2/16 4/16 2/16

1/16 2/16 1/16

LPF 3x3 Conv Kernel:

a1 a2 a3

b1 b2 b3

c1 c2 c3

(a1+a2+b1+b2)/4

(a1+2a2 + a3

+2b1+4b2+2b3

+c1+2c2 + c3)/16

Decompose to 2x2 kernel:

a1 a2 a3

b1 b2 b3

(a1+b1)/2 (a2+b2)/2 (a3+b3)/2

(a2+b2)/2 (a3+b3)/2 (a4+b4)/2

(…)/4 (…)/4 (…)/4

…
…
…
…
…

Row A

Row B

C = (A+B)/2

D = C << 1pix

A = (C+D)/2

PIM Mapping:

Figure 2: The LPF kernel and its PIM mapping.

HPF Kernel:
HPF(b2) =

sat(

|a1-c3|

+ |a2-c2|

+ |a3-c1|

+ |b1-b3|)

a1 a2 a3

b1 b2 b3

c1 c2 c3

a3 a4 a5

…
…
…
…
…
…
…
…
…
…
…

Row A

Row B

Row C

D = A << 2pix

E = B << 2pix

F = C << 2pix

G = |C – D|

H = |B – E|

I = |A – F|

J = |A – C|

A = sat(J+

PIM Mapping:

b3 b4 b5

c3 c4 c5

|a3-c1|

|b1-b3|

|a1-c3|

|a2-c2|

HPF(b2)

a1 a2 a3

b1 b2 b3

c1 c2 c3
(G+H+I) >> 1pix)

Figure 3: The HPF kernel and its PIM mapping.

high-precision estimate of the position and orientation. To eliminate
the overhead of feature matching, EBVO pre-calculate the nearest
edge distance throughout the whole image of 𝐹𝑘 , known as Distance
Transform [6] (𝐷𝑇𝑘), so that the residual of 𝑝 ′𝑘 can be directly looked-
up in 𝐷𝑇𝑘 . The gradient of DT is also pre-calculated for 𝐹𝑘 , so that
part of the Jacobian matrix (see Fig.5) can also be looked-up in this
gradient map. At QVGA (320x240) resolution, EBVO typically tracks
3000∼6000 features within 10 iterations depending the texture layout
of the environment, and this ensures high data parallelism in the fea-
ture detection and tracking steps to be exploited for PIM acceleration.

3 Algorithm Layer
In this section we first investigate and simplify the various calcula-

tion kernels required for the computing pipeline of EBVO as shown
in Fig.1, including the LPF, HPF and NMS kernels for edge detection,
and the feature warping and Jacobian kernels for pose estimation.
3.1 Restrictions

The PIM accelerator can be modeled as a SIMD processor with high
processing bandwidth aligned to the bit-width of the memory array.
However, compared to the powerful SIMD engines of CPU/GPU, PIM
can integrate much less functionalities, because in practical chip
layout, the shape of the memory cell restricts the PIM computing
logic on each word line. The basic operations that PIM could handle
in a single clock cycle are typically variants of shift and accumulate,
and the complicated operations such as shuffling or branching should
be avoided for a PIM friendly computing scheme.
3.2 Edge Detection Kernels

LPF Kernel: LPF is a typical 3x3 convolution throughout the
whole image. To perform LPF efficiently, we carefully select a 3x3
kernel whose coefficients are all 2𝑛 , as shown in Fig.2. To exploit
the data-reuse patterns, we further decompose it into a pipeline of
two simpler 2x2 convolutions, whose coefficients are all 1/4. The PIM

a1 a2 a3

b1 b2 b3

c1 c2 c3

a3 a4 a5

…
…
…
…
…
…
…
…
…
…
…
…
…
…
…

Row A

Row B

Row C

D = A << 2pix

E = B << 2pix

F = C << 2pix

G = max(C, D)

H = max(B, E)

I = max(A, F)

J = max(A, C)

K = min(J,
(G,H,I >> 1pix))

L = sat(B – th2)

M = L > K

N = B > th1

A = M && N

PIM Mapping:

b3 b4 b5

c3 c4 c5

max(a3,c1)

max(b1,b3)

max(a1,c3)

max(a2,c2)

min(…)
b2 – th2

L > min

b2 > th1

edge

Old NMS Kernel:
b2 > th1 &&

(((b2 – a1) > th2 && (b2 – c3) > th2)

|| ((b2 – a2) > th2 && (b2 – c2) > th2)

|| ((b2 – a3) > th2 && (b2 – c1) > th2)

|| ((b2 – b1) > th2 && (b2 – b3) > th2)

)

Simplification:
b2 > th1 && (

b2 – th2 > min(

max(a1, c3), max(a2, c2),

max(a3, c1), max(b1, b3))

Figure 4: The simplified NMS kernel and its PIM mapping.

mapping of this 2x2 kernel is very efficient, which is also shown in
Fig.2. From this LPF kernel, we distill the basic operations: shifting
and average.

HPFKernel: Traditionally, HPF requires two orthogonal 3x3 Sobel
convolution for the gradients𝑔𝑥 and𝑔𝑦 , and then calculates

√
𝑔2𝑥 + 𝑔2𝑦 .

Obviously this is costly, so we propose an alternative kernel which
only calculates the saturated (sat) sum-absolute-difference (SAD) on 4
directions, as shown in Fig.3. This calculation exhibits a similar result
to the original Soble kernels, but at a much lower cost. To reduce the
overhead of data shuffling, we observe that the SAD operands can be
fully aligned by shifting 2 pixels for each row. We also observe the
data-reuse pattern that the shifting of rows B, C can be pipelined to
the next processing. Thereby sat(SAD) can be smoothly calculated,
and the HPF kernel requires two new calculations: saturation and
absolute difference.

NMS Kernel: As shown in Fig.4, the original NMS kernel incurs
9 comparison with thresholds 𝑡ℎ1 and 𝑡ℎ2, as well as a compound
of 8 branches. Their naive PIM mappings are obviously inefficient,
and to simplify these, we notice the equations: (x>y AND x>z) ⇔
x>max(y,z), and (x>y OR x>z) ⇔ x>min(y,z). Thereby, the original
NMS kernel is simplified to only a few min/max arithmetical opera-
tions, and we will provide a branch-free implementation for them in
the next section. Fig.4 also depicts the data-reuse pattern for efficient
PIM mapping of the new NMS kernel.
3.3 Feature Quantization and the Warp Kernel

3D Features: As shown in Fig.5-a, a 3D feature is expressed by its
pixel coordinate (𝑢, 𝑣) and the depth 𝑑 on the anchor frame. During
the iterative pose estimation, the costly operation is to repeatedly
warp the features from the current frame to the keyframe. We opti-
mize this by using the quantized inverse-depth coordinate (𝑎, 𝑏, 𝑐)
for the 3D features, which embeds the camera intrinsic parameters
𝑓 , 𝑐𝑥 , 𝑐𝑦 . They are quantized to Q4.12 (4 integer and 12 fractional
bits) to retain high precision, because our experiment shows that
an 8-bit quantization lead to completely fault results, and the 16-bit
quantization exhibits a warp error of less than one pixel compared to
the float-point calculation.

Warp Kernel: As depicted in Fig.1-b and Fig.5-b, the warped pixel
coordinate (𝑢 ′, 𝑣 ′) is obtained from a 3D pose translation and camera
projection. To quantize this computation, we refer to the elements of
3x3 rotation matrix 𝑟𝑖 𝑗 ∈ 𝑅 and 3x1 translation vector 𝑡𝑖 ∈ 𝑇 . They

297

𝐽𝑡 =
𝐽1𝐽2𝐽3𝐽4𝐽5𝐽6

=
𝐼𝑢/𝑍𝐼𝑣/𝑍− 𝑋𝐼𝑢 + 𝑌𝐼𝑣 /𝑍2− 𝑌 𝑋𝐼𝑢 + 𝑌𝐼𝑣 /𝑍2 + 𝐼𝑣𝑋 𝑋𝐼𝑢 + 𝑌𝐼𝑣 /𝑍2 + 𝐼𝑢𝑋𝐼𝑣/𝑍 − 𝑌𝐼𝑢/𝑍

(c)

𝐼𝑢 𝐼𝑣𝐼𝑢/𝑍 𝐼𝑣/𝑍𝑋𝐼𝑢/𝑍 𝑌𝐼𝑢/𝑍 𝑋𝐼𝑣/𝑍 𝑌𝐼𝑣/𝑍𝑋𝐼𝑢 + 𝑌𝐼𝑣 /𝑍 𝑌𝐼𝑢 − 𝑋𝐼𝑣 /𝑍𝑋𝐼𝑢 + 𝑌𝐼𝑣 /𝑍2𝑌 𝑋𝐼𝑢 + 𝑌𝐼𝑣 /𝑍2 𝑋 𝑋𝐼𝑢 + 𝑌𝐼𝑣 /𝑍2𝑌 𝑋𝐼𝑢 + 𝑌𝐼𝑣 /𝑍2 + 𝐼𝑣 𝑋 𝑋𝐼𝑢 + 𝑌𝐼𝑣 /𝑍2 + 𝐼𝑢
𝐽3

𝐽4

𝐽1 𝐽2
𝐽6

𝐽5

𝑋𝑌𝑍 = 𝑟00𝑎 + 𝑟01𝑏 + 𝑟02 + 𝑡0𝑐𝑟10𝑎 + 𝑟11𝑏 + 𝑟12 + 𝑡1𝑐𝑟20𝑎 + 𝑟21𝑏 + 𝑟22 + 𝑡2𝑐𝑝′ = 𝑢′𝑣′ = 𝑓𝑋/𝑍 + 𝑐𝑥𝑓𝑌/𝑍 + 𝑐𝑦
(b)

(d)

𝑎𝑏𝑐 = 𝑢 − 𝑐𝑥 /𝑓𝑣 − 𝑐𝑦 /𝑓1/𝑑
(a)

Figure 5: (a) The inverse-depth coordinate for 3D features. (b)
The detailed warping function as in Fig.1-b. (c) The Jacobian
matrix induced by each feature. (4) The optimized calculation
pipeline of the Jacobian kernel.

all range within (−1, 1), because the pose difference is typically small
between the adjacent frames. Thereby we have them quantized to
Q1.15, which can be aligned to the 16-bit quantized features and be
computed efficiently in the PIM array.
3.4 Jacobian and Hessian Kernel

Jacobian Kernel: The Jacobian matrix induced by each warped
feature is shown in Fig.5-c, where (𝐼𝑢 , 𝐼𝑣) is the pixel gradient at the
warped coordinate (𝑢 ′, 𝑣 ′) on the 𝐷𝑇𝑘 map, and it is pre-calculated
for each keyframe. To reduce computing redundancy, we rearrange
the calculation order based on the duplicated items in 𝐽𝑡 , and propose
a computation pipeline for it as depicted in Fig.5-d. It is quantized to
Q14.2.

Hessian Kernel: When each 𝐽𝑡 is obtained, we calculate the Hes-
sian part 𝐽𝑇𝑡 𝐽𝑡 and steepest decent part 𝐽𝑡𝑟𝑡 , which are in turn added
to𝐻 and 𝑏 as in Fig.1 via a typical reduction operation. Finally the LM
iteration is finished by solving the pose update Δb from the 6 DOF
linear equations. In our experiment we observe that the LM solver
works fine with 32-bit quantized 𝐻 , whereas a 16-bit quantization
would lead to solver failure. Thereby we opt 32-bit Q29.3 for both 𝐻

and 𝑏 for the sake of data alignment and high computation precision.
The Jacobian, Hessian and steepest decent matrices can be com-

puted on PIM, because it can process the full set of features in parallel.
However, the next step is the linear solver of a small matrix of 6x6,
which can hardly benefit from the parallel computing of PIM. Thereby,
it should be conducted directly on a CPU without bothering to use
PIM acceleration.

4 Physical Layer

4.1 Hardware Architecture
From the algorithm layer, we distill the various basic operations

that PIM should support in the physical layer: logic, shifting, average,
saturation, absolute difference, min/max, and mul/div. To realize them
with high precision and efficiency, we adopt the bit-parallel prototype
as in [16], and enhance its functionalities with low hardware profile.
The proposed architecture is shown in Fig.6.

Memory Array: As a typical configuration for the EBVO, the
SRAM array is customized to (320 ∗ 8) × 256 bits, which has enough
capacity for an 8-bit QVGA image, or 20480 coefficients of 32-bit
for various calculations. This also enables a SIMD throughput of
320x8-bit, 160x16-bit, or 80x32-bit per operation.

Basic PIM Logic: We leverage the basic prototype of in-memory
AND/NOR logic (Fig.6-a), along with a NOR gate for logic XOR, and
a NOT gate for logic OR. Note that the bit-wise logic XOR and AND

BL/BLB

R
o

w
 D

ec
o

d
er

 x
2

320x8 columns

…

PIM Accumulator

2
5

6
 ro

w
sA

B

A op B

𝐵𝐿 𝐵𝐿𝐵

𝑉𝑟𝑒𝑓𝑆𝐴𝑆𝐴
𝐴𝑖&𝐵𝑖 𝐴𝑖|𝐵𝑖

𝐴𝑖 𝐴𝑖⋮𝑊𝐿𝐴
𝐵𝑖 ഥ𝐵𝑖⋮𝑊𝐿𝐵

(a) (b) (c)

C
ar

ry
C

o
n

tr
o

l

𝑨&𝑩

𝑉𝑟𝑒𝑓
𝐵𝐿𝑛+7:𝑛 𝐵𝐿𝐵𝑛+7:𝑛

𝑆𝐴𝑆𝐴

8-bit Acc & Shift

…
Carry Extension

…

Input Mux

𝑨|𝑩𝑨⊕ 𝑩 W
ri

te
-b

ac
k

Tmp Reg

Figure 6: (a) In-memory AND/NOR logic via two sense ampli-
fiers (SA); (b) Bit-parallel SRAM-PIM architecture. (c) A slice
of the PIM accumulator.

0 0 0 0 1 1 0 00 1 1 1 0 0 1 1

0 1 1 0 1 0 1 00 0 0 1 0 1 1 0

1 0 1 0 0 0 1 00 1 0 1 1 1 0 1

1 1 1 1 1 1 1 10 0 0 0 0 0 0 0

1 0 1 0 0 0 0 10 1 0 1 1 1 0 1

0 1 0 1 1 1 1 00 1 0 1 1 1 0 1

𝐴 = 115 12𝐵 = 22 106① 𝑀 = 𝐴 − 𝐵② 𝑁 = carry 𝐴 − 𝐵③ 𝑀 = 𝑀 +𝑁④ 𝐶 = 𝑀⊕𝑁
0 0 0 0 0 0 0 00 1 0 1 1 1 0 1① 𝑀 = sat 𝐴 − 𝐵② 𝑚𝑖𝑛 = 𝐴 −𝑀③ 𝑚𝑎𝑥 = 𝑀 + 𝐵

(a) 𝐶 = 𝐴 − 𝐵 = 93 94
(b) min 𝐴, 𝐵 = 22 12 , and max 𝐴, 𝐵 = 115 106

0 0 0 0 1 1 0 00 0 0 1 0 1 1 0

0 1 1 0 1 0 1 00 1 1 1 0 0 1 1

0 0 0 0 1 1 0 1

1 0 1 1 0 0 0 0

1 1 1 1 0 1 00

0 1 1 1 1 0 10

1 1 0 0 0 100

1 0 1 1 100 1

0 0 0 0 1 1 1 1

0 0 1 1 0 0 0 0

0 0 0 1 1 1 1 0

0 0 1 1 1 1 0 0

0 0 0 1 1 0 0 1

0 0 1 1 0 0 1 0

A=13

B=11

Step1

Step2

Step3

Step4

A=15

B=6

Step1

Step2

Step3

Step4

(c) 13 × 11 = 143 (d) 15 ÷ 6 = 2
Figure 7: Arithmetic examples: (a) Absolute difference; (b)Min
and max; (c) Multiplication; (d) Division and remainder.

perform a half-adder, and they can be accumulated to produce the
multi-bit summation.

Digital Arithmetic: As shown in Fig.6-c, the central computing
module is the accumulator and shifter grouped in 8-bit slices. Its
inputs are multiplexed with the PIM basic logic and the Tmp Reg, so
as to realize versatile operations. By controlling the propagation of
carry bits (Carry Control), the computing precision of 8/16/32/64 bit-
width can be configured in run-time. The Carry Extension generates
bitmasks that indicates the summation overflow, which is in turn
utilized to perform comparison and saturation.

Result and Write-back: Since the read/write access to the mem-
ory cannot coincide with each other, in the computing cycle, the
result is stored in Tmp Reg. In the next cycle, it can immediately feed
the computing logic, or be written back to SRAM. Thereby, the regis-
ter can stack the temporary result for various multi-stage operations
(see Fig.7), so as to alleviate the write-back latency and significantly
improve the computational efficiency.
4.2 Arithmetic

Based on this hardware architecture, we can easily realize the
trivial operations, such as logic AND/OR, addition (𝐴+𝐵), subtraction
(𝐴+ (−𝐵)), average ((𝐴+𝐵)/2) and saturation (sat(𝐴+𝐵) and sat(𝐴−
𝐵)). They are omitted here to simplify the exposition, and we only
provide details to the following multi-stage operations.

298

fr2_rpy fr3_str_notex_far

Figure 8: The tracking and reconstruction result of two dataset
sequences. The output trajectory (green) can be compared
with the groundtruth (red).

Absolute Subtraction: As shown in Fig.7-a, first we obtain 𝑀 =

𝐴 − 𝐵 as well as the carry extension 𝑁 . Then we can inverse the
negative part of𝑀 by: (𝑀 + 𝑁) ⊕ 𝑁 .

Min/Max: Inspired by the branch-free algorithm in [12], we obtain
max(𝐴, 𝐵) = sat(𝐴−𝐵)+𝐵, andmin(𝐴, 𝐵) = 𝐴−sat(𝐴−𝐵), as depicted
in Fig.7-b.

Multiplication: Inspired by [16], we obtain multi-bit product
𝐴 × 𝐵 from the MSB to LSB of 𝐵 as shown in Fig.7-c. Unlike [16] that
requires the inefficient bit reverse and multiple shifting, we propose
to concatenate both the partial product and 𝐵 in Tmp Reg, so that the
bit shifting and summation can be performed simultaneously. This
incurs n+2 clock cycles including the SRAM read/write overhead.
Note that both operands should be unsigned, whereas the negative
values can be easily inverted before and after the computation.

Division: As shown in Fig.7-d, multi-bit 𝐴 ÷ 𝐵 is conducted via a
canonical restoring-division. The partial remainder is stored in Tmp
Reg, and the quotient bits are stacked in the LSB. Note that both
operands should also be unsigned. In this case we obtain arbitrary
bit precision of division, and it also incurs n+2 clock cycles including
the SRAM read/write overhead.

5 Evaluation

5.1 Setup
Baseline: We adopt the state-of-the-art PicoVO [11], which is a

highly optimized EBVO that can run in real-time on the 216MHz
STM32F7 microcontroller. This MCU is manufactured in 90nm tech-
nology, which is taken as the baseline CMOS node of our hardware
simulation. And we also take the precision, timing and power results
of PicoVO on MCU for comparison of accuracy, processing speed and
power consumption to our PIM EBVO.

Algorithm and Software: We develop a cycle-accurate PIM sim-
ulator in C++ based on the physical design in Section IV to profile
the computing cycle of each kernels. We assume that all basic opera-
tions are single-cycle, and an extra write-back cycle is required when
the output resides in SRAM. We also implement a functional EBVO
system that can digest the TUM RGBD dataset [24], and integrate
the PIM simulator into it. The drift of the EBVO system is assessed
by the root mean square error (RMSE) of relative pose error (RPE)
against the groundtruth.

SRAM Array: To estimate the area of 2560x256-bit SRAM array,
we take the SRAM model in [4] which has a similar SA layout to our
proposal. The SPICE simulation in [4] is conducted in 28nm node,
and we scale it to 90nm according to our PIM setup. This reveals an
area of 3.48E6 um2 for memory array, and 5.60E4 um2 for the SA.
The read/write access to the SRAM takes 944.8pJ per operation.

(a) (b)
*1 iteration

1419120

4320000

29104
471192

0E+0

1E+6

2E+6

3E+6

4E+6

5E+6

Edge LM*

PicoVO

PIM

9282
12158

27351

83715

3107
9599

16411

58899

0E+0

2E+4

4E+4

6E+4

8E+4

LPF HPF NMS LM*

naïve

opt

*8 iterations

Figure 9: Computing cycles: (a) PicoVO and PIM EBVO; (b)
naive and optimized implementations on PIM.

Table 1: RMSE Comparison of Relative Pose Error
PicoVO PIM EBVO

Sequences t.(m/s) r.(◦/s) t.(m/s) r.(◦/s)
fr1_xyz 0.030 1.82 0.039 1.92
fr2_desk 0.020 0.69 0.019 0.64
fr3_st_ntex_far 0.028 0.77 0.030 0.86

Computing Logic: We implement the RTL design of the shifter,
accumulator and register of 2560 bits, and utilize the Synopsys DC
toolchain to synthesize our design in 90nm technology with 1.0V
voltage and 216MHz frequency. The result shows that the chip area is
1.80E5 um2, which is only 5.1% of the SRAM array, and the computing
power is 44.6pJ per operation.
5.2 Accuracy

As shown in Tab.1, the tracking precision of the proposed PIM
accelerated EBVO can compete with the state-of-the-art PicoVO im-
plementation. Despite the minor round-off error caused by quantiza-
tion and bit shifting during the feature warping and LM solver steps,
the numerical precision of EBVO is very stable. Fig.8 exhibits the
tracking and mapping results of two dataset sequences, which can
prove the robustness of our PIM EBVO under scenarios with rich or
poor features.
5.3 Computing Speed

Edge detection: The baseline PicoVO leverages a simplified detec-
tor called PicoEdge, and it takes up 1419120 cycles on board as shown
in Fig.9-a. By contrast, the PIM acceleration only requires 3107 cycles
for LPF, 9599 cycles for HPF, and 16411 cycles for NMS, summing up
to 29117 cycles for the entire edge detection procedure. This reveals
a 48x speedup over the PicoEdge detector. To show the performance
improvement of the proposed PIM mapping scheme, we also compare
it against a naive PIM implementation of those computing kernels,
as depicted in Fig.9-b. This reveals an overall speedup ratio of 1.7x.

LM solver: PicoVO requires around 540000 cycles for each LM
iteration, whereas on PIM, this overhead shrinks to 58899, which
exhibits a 9x acceleration over the software implementation. Note that
the speedup ratio is smaller than that of image processing, because the
LM solver incurs a lot of 32-bit mul/div operations, which has higher
complexity and 4x less throughput than the 8-bit image processing.
We also compare the proposed computing pipeline with a naive PIM
implementation (Fig.9-b), and the speedup ratio is 1.4x.

In the experiment, the LM solver converges within 8.1 iterations,
and the overall speedup ratio over PicoVO is around 11x. This implies
that the PIM accelerator can be clocked at a much lower frequency
(∼19MHz) than the MCU used in PicoVO, while still achieving the
same performance.

299

SRAM

86%

S&A

4%

Reg

10%
Mem rd

31%

Mem wr

7%
Reg wr

26%

Reg rd

36%

(a) (b)

Figure 10: (a) Energy consumption of various PIM hardware
components; (b) Memory access decomposition.

5.4 Energy Consumption
Without considering the I/O overhead, the baseline PicoVO takes

10.3mJ per frame on MCU. By contrast, the proposed PIM EBVO takes
0.495mJ per frame, which implies an improvement of 20.8x. To provide
more insight, Fig.10-a decomposes the energy consumption of the
PIM components: SRAM, Shifter & Adder, and Tmp Reg. It can be seen
that 86% of power is consumed by SRAM, which is 7x more than the
other PIM components. Thereby in our PIM EBVO implementation,
we attempt to exploit the Tmp Reg as much as possible, so as to
significantly reduce the SRAM write-back overhead, as shown in
Fig.10-b. Using one Tmp Reg is a modest setup in this work, and we
could use more registers to further improve the efficiency of both
computation and power.

6 CONCLUSION
In this work we investigate the processing-in-SRAM acceleration

for systematic optimization of the state-of-the-art EBVO. We analyze
and simplify the key computation kernels required for the EBVO
algorithm in the edge detection and pose estimation steps, and design
specific computing patterns with PIM friendly memory layout for
them accordingly. According to the calculation requirements of these
kernels, we propose a bit-parallel SRAM-PIM architecture that can
efficiently realize the high-precision arithmetical operations, while
limiting the cost of both chip area and energy consumption. The
experiments reveal that the PIM EBVO exhibits high tracking and
mapping accuracy, and achieves an overall 11x acceleration of com-
puting speed and 20x reduction of power consumption, compared to
the baseline implementation that runs on embedded MCUs.

The proposed SRAM-PIM architecture has developed a general-
purpose SIMD computing scheme for image processing and state
estimation, and it may also benefit the integration of a broader range
of applications such as CNN. In the future we plan to support more
VO/vSLAM models, such as VIO and multiple camera sensor fusion,
and realize our design in silicon.

Acknowledgments
This work is supported by the Strategic Priority Research Program

of Chinese Academy of Sciences, Grant No. XDC05030201.

References
[1] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish Narayanasamy, David

Blaauw, and Reetuparna Das. 2017. Compute caches. In 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 481–492.

[2] Khalid Al-Hawaj, Olalekan Afuye, Shady Agwa, Alyssa Apsel, and Christopher
Batten. 2020. Towards a reconfigurable bit-serial/bit-parallel vector accelerator
using in-situ processing-in-sram. In 2020 IEEE International Symposium on Circuits
and Systems (ISCAS). IEEE, 1–5.

[3] Mustafa Ali, Akhilesh Jaiswal, Sangamesh Kodge, Amogh Agrawal, Indranil
Chakraborty, and Kaushik Roy. 2020. IMAC: In-memory multi-bit multiplication

and ACcumulation in 6T SRAM array. IEEE Transactions on Circuits and Systems I:
Regular Papers 67, 8 (2020), 2521–2531.

[4] Charles Eckert, Xiaowei Wang, Jingcheng Wang, Arun Subramaniyan, Ravi Iyer,
Dennis Sylvester, David Blaaauw, and Reetuparna Das. 2018. Neural cache: Bit-
serial in-cache acceleration of deep neural networks. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 383–396.

[5] Jakob Engel, Thomas Schöps, and Daniel Cremers. 2014. LSD-SLAM: Large-scale
direct monocular SLAM. In European conference on computer vision. Springer.

[6] Pedro F Felzenszwalb and Daniel P Huttenlocher. 2012. Distance transforms of
sampled functions. Theory of computing 8, 1 (2012), 415–428.

[7] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. 2014. SVO: Fast semi-direct
monocular visual odometry. In 2014 IEEE international conference on robotics and
automation (ICRA). IEEE, 15–22.

[8] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. 2019. Duality cache for data
parallel acceleration. In Proceedings of the 46th International Symposium on Computer
Architecture. 397–410.

[9] Anders Grunnet-Jepsen, Michael Harville, Brian Fulkerson, Daniel Piro, Shirit Brook,
and Jim Radford. [n.d.]. Introduction to Intel® RealSense™ Visual SLAM and the T265
Tracking Camera. https://dev.intelrealsense.com/docs/intel-realsensetm-visual-
slam-and-the-t265-tracking-camera

[10] Xiaochen Guo, Engin Ipek, and Tolga Soyata. 2010. Resistive computation: Avoiding
the power wall with low-leakage, STT-MRAM based computing. ACM SIGARCH
computer architecture news 38, 3 (2010), 371–382.

[11] Yuquan He, Ying Wang, Cheng Liu, and Lei Zhang. 2021. PicoVO: A Lightweight
RGB-D Visual Odometry Targeting Resource-Constrained IoT Devices. In 2021 IEEE
International Conference on Robotics and Automation (ICRA). 5567–5573. https:
//doi.org/10.1109/ICRA48506.2021.9561285

[12] Jr. Henry S. Warren. [n.d.]. Hacker’s Delight: The Basics. https://www.informit.
com/articles/article.aspx?p=1959565{&}seqNum=19

[13] Mark Horowitz. 2014. 1.1 Computing’s energy problem (and what we can do about
it). In 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC). 10–14. https://doi.org/10.1109/ISSCC.2014.6757323

[14] Supreet Jeloka, Naveen Bharathwaj Akesh, Dennis Sylvester, and David Blaauw.
2016. A 28 nm configurable memory (TCAM/BCAM/SRAM) using push-rule 6T
bit cell enabling logic-in-memory. IEEE Journal of Solid-State Circuits 51, 4 (2016),
1009–1021.

[15] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram
Burgard. 2011. g2o: A general framework for graph optimization. In 2011 IEEE
International Conference on Robotics and Automation. IEEE, 3607–3613.

[16] Kyeongho Lee, Jinho Jeong, Sungsoo Cheon, Woong Choi, and Jongsun Park. 2020.
Bit parallel 6T SRAM in-memory computing with reconfigurable bit-precision. In
2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[17] Runze Liu, Jianlei Yang, Yiran Chen, and Weisheng Zhao. 2019. eslam: An energy-
efficient accelerator for real-time orb-slam on fpga platform. In Proceedings of the
56th Annual Design Automation Conference 2019. 1–6.

[18] Raul Mur-Artal and Juan D Tardós. 2017. Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics 33, 5 (2017),
1255–1262.

[19] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. ACM Sigplan notices 42, 6 (2007), 89–100.

[20] Fabian Schenk and Friedrich Fraundorfer. 2017. Robust edge-based visual odometry
usingmachine-learned edges. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 1297–1304.

[21] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A Kozuch, Onur Mutlu, Phillip B Gibbons, and
Todd C Mowry. 2017. Ambit: In-memory accelerator for bulk bitwise operations
using commodity DRAM technology. In 2017 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 273–287.

[22] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R StanleyWilliams, and Vivek Srikumar. 2016. ISAAC:
A convolutional neural network accelerator with in-situ analog arithmetic in cross-
bars. ACM SIGARCH Computer Architecture News 44, 3 (2016), 14–26.

[23] Xin Si, Yung-Ning Tu, Wei-Hsing Huang, Jian-Wei Su, Pei-Jung Lu, Jing-Hong
Wang, Ta-Wei Liu, Ssu-Yen Wu, Ruhui Liu, Yen-Chi Chou, et al. 2020. 15.5 a 28nm
64kb 6t sram computing-in-memory macro with 8b mac operation for ai edge chips.
In 2020 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, 246–248.

[24] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. 2012. A bench-
mark for the evaluation of RGB-D SLAM systems. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 573–580.

[25] Amr Suleiman, Zhengdong Zhang, Luca Carlone, Sertac Karaman, and Vivienne
Sze. 2019. Navion: A 2-mw fully integrated real-time visual-inertial odometry
accelerator for autonomous navigation of nano drones. IEEE Journal of Solid-State
Circuits 54, 4 (2019), 1106–1119.

[26] Elene Terry. 2019. Silicon at the Heart of HoloLens 2. In 2019 IEEE Hot Chips 31
Symposium (HCS). IEEE Computer Society, 1–26.

[27] Yi Zhou, Hongdong Li, and Laurent Kneip. 2018. Canny-vo: Visual odometry with
rgb-d cameras based on geometric 3-d–2-d edge alignment. IEEE Transactions on
Robotics 35, 1 (2018), 184–199.

300

https://dev.intelrealsense.com/docs/intel-realsensetm-visual-slam-and-the-t265-tracking-camera
https://dev.intelrealsense.com/docs/intel-realsensetm-visual-slam-and-the-t265-tracking-camera
https://doi.org/10.1109/ICRA48506.2021.9561285
https://doi.org/10.1109/ICRA48506.2021.9561285
https://www.informit.com/articles/article.aspx?p=1959565{&}seqNum=19
https://www.informit.com/articles/article.aspx?p=1959565{&}seqNum=19
https://doi.org/10.1109/ISSCC.2014.6757323

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160112132206
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160112132206
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

