skip to main content
10.1145/3489517.3530528acmconferencesArticle/Chapter ViewAbstractPublication PagesdacConference Proceedingsconference-collections
research-article
Public Access

CamSkyGate: camouflaged skyrmion gates for protecting ICs

Published: 23 August 2022 Publication History

Abstract

Magnetic skyrmion has the potential to become one of the candidates for emerging technologies due to its ultra-high integration density and ultra-low energy. Skyrmion is a magnetic pattern created by transverse current injection in the ferromagnetic (FM) layer. A skyrmion can be generated by localized spin-polarized current and behaves like a stable pseudoparticle. Different logic gates have been proposed, where the presence or absence of a single skyrmion is represented as binary logic 1 or logic 0, respectively. In this paper, we propose novel camouflaged logic gate designs to prevent an adversary from extracting the original netlist. The proposal uses differential doping to block the propagation of the skyrmions to realize the camouflaged gates. To the best of our knowledge, we are the first to propose camouflaged skyrmion gates to prevent an adversary from performing reverse engineering. We demonstrate the functionality of different camouflaged gates using the mumax3 micromagnetic simulator. We have also evaluated the security of the proposed camouflaged designs using SAT attacks. We show that the same security from the traditional CMOS-based camouflaged circuits can be retained.

References

[1]
[n.d.]. Perpendicular reading of single confined magnetic skyrmions. 6 ([n. d.]).
[2]
L. Amarú, P. Gaillardon, and G. De Micheli. 2015. The EPFL combinational benchmark suite. In Proceedings of the International Workshop on Logic & Synthesis (IWLS).
[3]
S. Breitkreutz, G. Ziemys, I. Eichwald, J. Kiermaier, G. Csaba, W. Porod, D. Schmitt-Landsiedel, and M. Becherer. 2013. Domain wall gate for magnetic logic and memory applications with perpendicular anisotropy. In IEEE International Electron Devices Meeting. 22--4.
[4]
D. Bryan. 1985. The ISCAS'85 benchmark circuits and netlist format. North Carolina State University 25 (1985), 39.
[5]
M. Chauwin, X. Hu, F. Garcia-Sanchez, N. Betrabet, A. Paler, C. Moutafis, and J S. Friedman. 2019. Skyrmion logic system for large-scale reversible computation. Physical Review Applied 12, 6 (2019), 064053.
[6]
T. Chen. 2006. Overcoming research challenges for CMOS scaling: Industry directions. In International Conference on Solid-State and Integrated Circuit Technology Proceedings. 4--7.
[7]
M. El Massad, S. Garg, and M. V. Tripunitara. 2015. Integrated Circuit (IC) Decamouflaging: Reverse Engineering Camouflaged ICs within Minutes. In NDSS. 1--14.
[8]
B. Erbagci, C. Erbagci, N. E. C. Akkaya, and K. Mai. 2016. A secure camouflaged threshold voltage defined logic family. In IEEE International Symposium on Hardware Oriented Security and Trust (HOST). 229--235.
[9]
A. Fert, V. Cros, and J. Sampaio. 2013. Skyrmions on the track. Nature nanotechnology 8, 3 (2013), 152--156.
[10]
L. Frank, M. Hovorka, MM. El-Gomati, I. Müllerová, F. Mika, and E. Mikmeková. 2020. Acquisition of the dopant contrast in semiconductors with slow electrons. Journal of Electron Spectroscopy and Related Phenomena 241 (2020), 146836.
[11]
N. Gaur, S. Kundu, SN. Piramanayagam, SL. Maurer, HK. Tan, SK. Wong, SE. Steen, H. Yang, and CS. Bhatia. 2013. Lateral displacement induced disorder in L1 0-FePt nanostructures by ion-implantation. Scientific reports 3, 1 (2013), 1--7.
[12]
M. Gavagnin, H. D. Wanzenboeck, S. Wachter, M. M. Shawrav, A. Persson, K. Gunnarsson, P. Svedlindh, M. Stoger-Pollach, and E. Bertagnolli. 2014. Free-standing magnetic nanopillars for 3D nanomagnet logic. ACS applied materials & interfaces 6, 22 (2014), 20254--20260.
[13]
J. Iwasaki, M. Mochizuki, and N. Nagaosa. 2013. Current-induced skyrmion dynamics in constricted geometries. Nature nanotechnology 8, 10 (2013), 742--747.
[14]
W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M B. Jungfleisch, F. Y Fradin, J. E Pearson, Y. Tserkovnyak, K. L Wang, O. Heinonen, et al. 2015. Blowing magnetic skyrmion bubbles. Science 349, 6245 (2015), 283--286.
[15]
W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M B. Jungfleisch, J. E Pearson, X. Cheng, O. Heinonen, K. L Wang, et al. 2017. Direct observation of the skyrmion Hall effect. Nature Physics 13, 2 (2017), 162--169.
[16]
W. Kang, Y. Huang, X. Zhang, Y. Zhou, and W. Zhao. 2016. Skyrmion-Electronics: An Overview and Outlook. Proc. IEEE 104, 10 (2016), 2040--2061.
[17]
M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z Pan. 2017. Provably secure camouflaging strategy for IC protection. IEEE transactions on computer-aided design of integrated circuits and systems 38, 8 (2017), 1399--1412.
[18]
S. Luo and L. You. 2021. Skyrmion devices for memory and logic applications. APL Materials 9, 5 (2021), 050901.
[19]
J. McCord, I. Mönch, J. Fassbender, A. Gerber, and E. Quandt. 2009. Local setting of magnetic anisotropy in amorphous films by Co ion implantation. Journal of Physics D: Applied Physics 42, 5 (2009), 055006.
[20]
S. Y. Park, D. S. Kim, Y. Liu, J. Hwang, et al. 2020. Controlling the Magnetic Anisotropy of the van der Waals Ferromagnet Fe3GeTe2 through Hole Doping. Nano Letters 20, 1 (2020), 95--100.
[21]
S. E Quadir, J. Chen, D. Forte, N. Asadizanjani, S. Shahbazmohamadi, L. Wang, J. Chandy, and M. Tehranipoor. 2016. A survey on chip to system reverse engineering. ACM journal on emerging technologies in computing systems (JETC) 13, 1 (2016), 1--34.
[22]
J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri. 2013. Security analysis of integrated circuit camouflaging. In Proceedings of the ACM SIGSAC conference on Computer & communications security. 709--720.
[23]
J. A Roy, F. Koushanfar, and I. L Markov. 2010. Ending piracy of integrated circuits. Computer 43, 10 (2010), 30--38.
[24]
B. Shakya, H. Shen, M. Tehranipoor, and D. Forte. 2019. Covert gates: Protecting integrated circuits with undetectable camouflaging. IACR Transactions on Cryptographic Hardware and Embedded Systems (2019), 86--118.
[25]
CamSkyGate Skyrmion Simulations. 2021. https://github.com/2660039863/CamSkyGate_DAC.
[26]
P. Subramanyan, S. Ray, and S. Malik. 2015. Evaluating the security of logic encryption algorithms. In International Symposium on Hardware Oriented Security and Trust. 137--143.
[27]
P. Subramanyan, S. Ray, and S. Malik. 2015. Evaluating the security of logic encryption algorithms. In IEEE International Symposium on Hardware Oriented Security and Trust (HOST). 137--143.
[28]
A.A. Thiele. 1973. Steady-state motion of magnetic domains. Physical Review Letters 30, 6 (1973), 230.
[29]
R. Torrance and D. James. 2007. Reverse engineering in the semiconductor industry. In IEEE Custom Integrated Circuits Conference. 429--436.
[30]
R. Torrance and D. James. 2011. The state-of-the-art in semiconductor reverse engineering. In Proceedings of the Design Automation Conference. 333--338.
[31]
Benjamin W Walker, Can Cui, Felipe Garcia-Sanchez, Jean Anne C Incorvia, Xuan Hu, and Joseph S Friedman. 2021. Skyrmion logic clocked via voltage-controlled magnetic anisotropy. Applied Physics Letters 118, 19 (2021), 192404.
[32]
Y. Xie and A. Srivastava. 2016. Mitigating SAT attack on logic locking. In International conference on cryptographic hardware and embedded systems. 127--146.
[33]
M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran. 2016. CamoPerturb: Secure IC camouflaging for minterm protection. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 1--8.
[34]
G. Yu, P. Upadhyaya, X. Li, W. Li, S. K. Kim, Y. Fan, K. L Wong, Y. Tserkovnyak, P. K. Amiri, and K. L Wang. 2016. Room-temperature creation and spin-orbit torque manipulation of skyrmions in thin films with engineered asymmetry. Nano letters 16, 3 (2016), 1981--1988.
[35]
J. Zang, M. Mostovoy, J. H. Han, and N. Nagaosa. 2011. Dynamics of skyrmion crystals in metallic thin films. Physical review letters 107, 13 (2011), 136804.
[36]
X. Zhang, Y. Zhou, M. Ezawa, G.P. Zhao, and W. Zhao. 2015. Magnetic skyrmion transistor: skyrmion motion in a voltage-gated nanotrack. Scientific reports 5, 1 (2015), 1--8.
[37]
Z. Zhou, U. Guin, P. Li, and V. D Agrawal. 2021. Defect Characterization and Testing of Skyrmion-Based Logic Circuits. In VLSI Test Symposium (VTS). 1--7.
[38]
Z. Zhou, U. Guin, P. Li, and V. D Agrawal. 2022. Fault Modeling and Test Generation for Technology-Specific Defects of Skyrmion Logic Circuits. In VLSI Test Symposium (VTS). 1--7.

Cited By

View all
  • (2024)Exploring Security Solutions and Vulnerabilities for Embedded Non-Volatile Memories2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)10.1109/ISVLSI61997.2024.00072(361-366)Online publication date: 1-Jul-2024
  • (2024)A Circuit Protection Method Based on Replacing Minterms with Combinatorial CircuitsMicroelectronics Journal10.1016/j.mejo.2024.106314(106314)Online publication date: Jul-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
DAC '22: Proceedings of the 59th ACM/IEEE Design Automation Conference
July 2022
1462 pages
ISBN:9781450391429
DOI:10.1145/3489517
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 August 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. IC camouflaging
  2. SAT-based attack
  3. VCMA effect
  4. doping
  5. reverse engineering
  6. skyrmion-based logic

Qualifiers

  • Research-article

Funding Sources

Conference

DAC '22
Sponsor:
DAC '22: 59th ACM/IEEE Design Automation Conference
July 10 - 14, 2022
California, San Francisco

Acceptance Rates

Overall Acceptance Rate 1,770 of 5,499 submissions, 32%

Upcoming Conference

DAC '25
62nd ACM/IEEE Design Automation Conference
June 22 - 26, 2025
San Francisco , CA , USA

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)123
  • Downloads (Last 6 weeks)17
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Exploring Security Solutions and Vulnerabilities for Embedded Non-Volatile Memories2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)10.1109/ISVLSI61997.2024.00072(361-366)Online publication date: 1-Jul-2024
  • (2024)A Circuit Protection Method Based on Replacing Minterms with Combinatorial CircuitsMicroelectronics Journal10.1016/j.mejo.2024.106314(106314)Online publication date: Jul-2024

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media