skip to main content
10.1145/3490138.3490142acmotherconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article
Public Access

In Situ Climate Modeling for Analyzing Extreme Weather Events

Authors Info & Claims
Published:15 November 2021Publication History

ABSTRACT

The study of many extreme weather events requires simulations with high spatiotemporal data that can grow in size quickly. Storing all the raw data from such a large-scale simulation for traditional post hoc analyses is soon going to be prohibitive as the data generation speed is outpacing the data storage capability in supercomputers. In situ analysis has emerged as a solution to this problem; data is analyzed when it is being produced, bypassing the slower disk input/output (I/O). In this work, we develop a new in situ analysis pathway for Energy Exascale Earth System Model (E3SM) and propose an algorithm for analyzing the impacts of sudden stratospheric warmings (SSWs), which can cause extreme cold temperature outbreaks at the surface, resulting in hazardous weather and disrupting many socioeconomic sectors. We detect SSWs and model the surface temperature data distributions in situ and show that post hoc analysis using the distribution models can predict the impact of SSWs in the continental United States.

References

  1. James Ahrens, Sebastien Jourdain, Patrick O’Leary, John Patchett, David H. Rogers, and Mark Petersen. 2014. An Image-Based Approach to Extreme Scale in Situ Visualization and Analysis. In SC ’14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. 424–434. https://doi.org/10.1109/SC.2014.40Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. David Andrews, Conway Leovy, and James Holton. 1987. Middle atmosphere dynamics. https://www.osti.gov/biblio/5936274Google ScholarGoogle Scholar
  3. John Aycock. 2003. A brief history of just-in-time. ACM Computing Surveys (CSUR) 35, 2 (2003), 97–113.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Mark P. Baldwin, Blanca Ayarzagüena, Thomas Birner, Neal Butchart, Amy H. Butler, Andrew J. Charlton-Perez, Daniela I. V. Domeisen, Chaim I. Garfinkel, Hella Garny, Edwin P. Gerber, Michaela I. Hegglin, Ulrike Langematz, and Nicholas M. Pedatella. 2021. Sudden Stratospheric Warmings. Reviews of Geophysics 59, 1 (2021), e2020RG000708. https://doi.org/10.1029/2020RG000708Google ScholarGoogle ScholarCross RefCross Ref
  5. Andrew C. Bauer, Hasan Abbasi, James Ahrens, Hank Childs, Berk Geveci, Scott Klasky, Kenneth Moreland, Patrick O’Leary, Venkatram Vishwanath, Brad Whitlock, and E. W. Bethel. 2016. In Situ Methods, Infrastructures, and Applications on High Performance Computing Platforms. Computer Graphics Forum(2016).Google ScholarGoogle Scholar
  6. Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. 2012. Julia: A fast dynamic language for technical computing. arXiv preprint arXiv:1209.5145(2012).Google ScholarGoogle Scholar
  7. Ayan Biswas, Soumya Dutta, Earl Lawrence, John Patchett, Jon C. Calhoun, and James Ahrens. 2020. Probabilistic Data-Driven Sampling via Multi-Criteria Importance Analysis. IEEE Transactions on Visualization and Computer Graphics (2020), 1–1. https://doi.org/10.1109/TVCG.2020.3006426Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ayan Biswas, Soumya Dutta, Jesus Pulido, and James Ahrens. 2018. In Situ Data-Driven Adaptive Sampling for Large-Scale Simulation Data Summarization. In Proceedings of the Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization(Dallas, Texas, USA) (ISAV ’18). Association for Computing Machinery, New York, NY, USA, 13–18. https://doi.org/10.1145/3281464.3281467Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C Wilson, and Michael I Jordan. 2013. Streaming variational bayes. arXiv preprint arXiv:1307.6769(2013).Google ScholarGoogle Scholar
  10. Andrew J. Charlton and Lorenzo M. Polvani. 2007. A New Look at Stratospheric Sudden Warmings. Part I: Climatology and Modeling Benchmarks. Journal of Climate 20, 3 (2007), 449 – 469. https://doi.org/10.1175/JCLI3996.1Google ScholarGoogle ScholarCross RefCross Ref
  11. Hank Childs 2020. A terminology for in situ visualization and analysis systems. The International Journal of High Performance Computing Applications 34, 6(2020), 676–691. https://doi.org/10.1177/1094342020935991Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Soumya Dutta, Ayan Biswas, and James Ahrens. 2019. Multivariate Pointwise Information-Driven Data Sampling and Visualization. Entropy 21, 7 (2019). https://doi.org/10.3390/e21070699Google ScholarGoogle Scholar
  13. Soumya Dutta, Chun-Ming Chen, Gregory Heinlein, Han-Wei Shen, and Jen-Ping Chen. 2017. In Situ Distribution Guided Analysis and Visualization of Transonic Jet Engine Simulations. IEEE Transactions on Visualization and Computer Graphics 23, 1(2017), 811–820. https://doi.org/10.1109/TVCG.2016.2598604Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. E3SM Project. 2018. Energy Exascale Earth System Model (E3SM). [Computer Software] https://dx.doi.org/10.11578/E3SM/dc.20180418.36. https://doi.org/10.11578/E3SM/dc.20180418.36Google ScholarGoogle Scholar
  15. ECP (accessed August 16, 2021). ECP: Exascale Computing Project. https://www.exascaleproject.org/.Google ScholarGoogle Scholar
  16. Veronika Eyring, Sandrine Bony, Gerald A. Meehl, Catherine A. Senior, Bjorn Stevens, Ronald J. Stouffer, and Karl E. Taylor. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development 9, 5 (2016), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016Google ScholarGoogle ScholarCross RefCross Ref
  17. Nathan Fabian, Kenneth Moreland, David Thompson, Andrew C. Bauer, Pat Marion, Berk Gevecik, Michel Rasquin, and Kenneth E. Jansen. 2011. The ParaView Coprocessing Library: A scalable, general purpose in situ visualization library. In 2011 IEEE Symposium on Large Data Analysis and Visualization. 89–96. https://doi.org/10.1109/LDAV.2011.6092322Google ScholarGoogle ScholarCross RefCross Ref
  18. Jean-Christophe Golaz 2019. The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution. Journal of Advances in Modeling Earth Systems 11, 7 (2019), 2089–2129. https://doi.org/10.1029/2018MS001603 arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018MS001603Google ScholarGoogle ScholarCross RefCross Ref
  19. Subhashis Hazarika, Soumya Dutta, Han-Wei Shen, and Jen-Ping Chen. 2019. CoDDA: A Flexible Copula-based Distribution Driven Analysis Framework for Large-Scale Multivariate Data. IEEE Transactions on Visualization and Computer Graphics 25, 1(2019), 1214–1224. https://doi.org/10.1109/TVCG.2018.2864801Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Whitney K Huang, Michael L Stein, David J McInerney, Shanshan Sun, and Elisabeth J Moyer. 2016. Estimating changes in temperature extremes from millennial-scale climate simulations using generalized extreme value (GEV) distributions. Advances in Statistical Climatology, Meteorology and Oceanography 2, 1(2016), 79–103.Google ScholarGoogle ScholarCross RefCross Ref
  21. Junsu Kim, Seok-Woo Son, Edwin P. Gerber, and Hyo-Seok Park. 2017. Defining Sudden Stratospheric Warming in Climate Models: Accounting for Biases in Model Climatologies. Journal of Climate 30, 14 (2017), 5529 – 5546. https://doi.org/10.1175/JCLI-D-16-0465.1Google ScholarGoogle ScholarCross RefCross Ref
  22. Matthew Larsen, James Ahrens, Utkarsh Ayachit, Eric Brugger, Hank Childs, Berk Geveci, and Cyrus Harrison. 2017. The ALPINE In Situ Infrastructure: Ascending from the Ashes of Strawman. In Proceedings of the In Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization(Denver, CO, USA) (ISAV’17). Association for Computing Machinery, New York, NY, USA, 42–46. https://doi.org/10.1145/3144769.3144778Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Matthew Larsen, Amy Woods, Nicole Marsaglia, Ayan Biswas, Soumya Dutta, Cyrus Harrison, and Hank Childs. 2018. A Flexible System for in Situ Triggers. In Proceedings of the Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization(Dallas, Texas, USA) (ISAV ’18). Association for Computing Machinery, New York, NY, USA, 1–6. https://doi.org/10.1145/3281464.3281468Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Henry Lehmann and Bernhard Jung. 2014. In-situ multi-resolution and temporal data compression for visual exploration of large-scale scientific simulations. In 2014 IEEE 4th Symposium on Large Data Analysis and Visualization (LDAV). 51–58. https://doi.org/10.1109/LDAV.2014.7013204Google ScholarGoogle ScholarCross RefCross Ref
  25. Xin Liang, Sheng Di, Dingwen Tao, Zizhong Chen, and Franck Cappello. 2018. An Efficient Transformation Scheme for Lossy Data Compression with Point-Wise Relative Error Bound. In 2018 IEEE International Conference on Cluster Computing (CLUSTER). 179–189. https://doi.org/10.1109/CLUSTER.2018.00036Google ScholarGoogle Scholar
  26. Peter Lindstrom. 2014. Fixed-Rate Compressed Floating-Point Arrays. IEEE Transactions on Visualization and Computer Graphics 20, 12(2014), 2674–2683. https://doi.org/10.1109/TVCG.2014.2346458Google ScholarGoogle ScholarCross RefCross Ref
  27. Jay F. Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki, and Chen Jin. 2008. Flexible IO and Integration for Scientific Codes through the Adaptable IO System (ADIOS). In Proceedings of the 6th International Workshop on Challenges of Large Applications in Distributed Environments (Boston, MA, USA) (CLADE ’08). Association for Computing Machinery, New York, NY, USA, 15–24. https://doi.org/10.1145/1383529.1383533Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. SENSEI 2021 (accessed August 16, 2021). SENSEI:Scalable in situ analysis and visualization. https://sensei-insitu.org/.Google ScholarGoogle Scholar
  29. Zhuo Wang, Yujing Jiang, Hui Wan, Jun Yan, and Xuebin Zhang. 2017. Detection and attribution of changes in extreme temperatures at regional scale. Journal of Climate 30, 17 (2017), 7035–7047.Google ScholarGoogle ScholarCross RefCross Ref
  30. Tzu-Hsuan Wei, Soumya Dutta, and Han-Wei Shen. 2018. Information Guided Data Sampling and Recovery Using Bitmap Indexing. In 2018 IEEE Pacific Visualization Symposium (PacificVis). 56–65. https://doi.org/10.1109/PacificVis.2018.00016Google ScholarGoogle Scholar
  31. Brad Whitlock, Jean M. Favre, and Jeremy S. Meredith. 2011. Parallel in Situ Coupling of Simulation with a Fully Featured Visualization System. In Proceedings of the 11th Eurographics Conference on Parallel Graphics and Visualization (Llandudno, UK) (EGPGV ’11). Eurographics Association, 101–109. https://doi.org/10.2312/EGPGV/EGPGV11/101-109Google ScholarGoogle ScholarCross RefCross Ref
  32. Jonathan Woodring, James Ahrens, J. Figg, Joanne Wendelberger, Salman Habib, and Katrin Heitmann. 2011. In-situ Sampling of a Large-scale Particle Simulation for Interactive Visualization and Analysis. In Proceedings of the 13th Eurographics / IEEE - VGTC Conference on Visualization (Bergen, Norway). Eurographics Association, 1151–1160. https://doi.org/10.1111/j.1467-8659.2011.01964.xGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yucong Chris Ye, Tyson Neuroth, Franz Sauer, Kwan-Liu Ma, Giulio Borghesi, Aditya Konduri, Hemanth Kolla, and Jacqueline Chen. 2016. In situ generated probability distribution functions for interactive post hoc visualization and analysis. In 2016 IEEE 6th Symposium on Large Data Analysis and Visualization (LDAV). 65–74. https://doi.org/10.1109/LDAV.2016.7874311Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. In Situ Climate Modeling for Analyzing Extreme Weather Events
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            ISAV'21: ISAV'21: In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization
            November 2021
            36 pages
            ISBN:9781450387156
            DOI:10.1145/3490138

            Copyright © 2021 ACM

            Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of the United States government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 15 November 2021

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed limited

            Acceptance Rates

            Overall Acceptance Rate23of63submissions,37%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format